(Back to Szybalski homepage)

LIST OF PUBLICATIONS OF DR. WACLAW SZYBALSKI

(for selected areas of his activities) assembled by F. R. Blattner, R. R. Burgess, W. F. Dove, M. Filutowicz, R. L. Gourse, Z. Hradecná,  B. A. Szybalski-Sandor, and J. Wild published  in  GENE  Vol.  223 (1998)  pp.  395-409,  and  updated  April 2, 2008

1.  UNDERGRADUATE YEARS (1939 - 1944) during WWII in Lwów, Poland

1(1). PAPER CHROMATOGRAPHY (Lwów Institute of Technology)

Because of a shortage of the chromatography-grade aluminum oxide during World War II,  Waclaw Szybalski was "forced" to invent paper chromatography as a substitute for the aluminum oxide chromatography.  He initiated it single-handedly in 1940  at the Departments of Inorganic Chemistry (Prof. W. Jakob, Chairman) and  of Petroleum Technology, (Prof. S. Pilat, Chairman), when he was an undergraduate student at the Institute of Technology (Politechnika Lwowska), Lwów, Poland, during the cruel and inhumane Soviet occupation of Lwów.  He completed the final phases of this work in 1944/1945 when he was in charge of the Agricultural Research Laboratory, in Konskie, Poland.  He published some of the applications of his filter paper chromatography studies only after World War II:

Szybalski, W., 1950.  Oznaczanie aminokwasów przy pomocy dwuwymiarowej chromatografii na bibule.  (Determination of amino acids by the two-dimensional paper chromatography.)  Przemysl Chemiczny  5, 32-37.  (in Polish, English summary)

The paper (partition) chromatography was concurrently, but totally independently, developed in England (first publication in 1941, but unavailable in occupied Poland until after WWII), and the inventors, Martin and Synge, were awarded the 1952 Nobel prize in chemistry. http://ca.geocities.com/cemys_qiws/martin-biopress.html

Thus, because of the Soviet-German barbaric and brutal invasion of Poland in 1939 Poland has lost two possible Nobel prizes: one to be awarded to Rudolf Weigl for his discovery and development of the typhus vaccine (see 1(2). ANTI-TYPHUS VACCINE, below) and the other one which should have been jointly awarded to Martin, Synge and Szybalski, {in England and in occupied Poland} for the development of partition paper chromatography].

1(2). ANTI-TYPHUS VACCINE (Lwów University)

In years 1941-44, Waclaw Szybalski was employed by Professor R. Weigl at his Institute in Lwów, Poland, where he was in charge of a unit breeding healthy lice for production of Weigl’s typhus vaccine.

Szybalski, W., 1999. Maintenance of human-fed live lice in the laboratory and production of Weigl's exanthematic typhus vaccine. In: Maintenance of Human, Animal, and Plant Pathogen Vectors. Maramorosch, K. and Mahmood, F. (Eds.) Science Publishers, Inc., Enfield, NH, USA. pp. 161-180. http://www.lwow.home.pl/tyfus.html [in Polish] http://www.lwow.home.pl/Weigl.html [in English]

Szybalski, W., 2003. The genius of Rudolf Stefan Weigl (1883-1957), a Lvovian microbe hunter and breeder – In Memoriam. In: International Weigl Conference (Microorganisms in Pathogenesis and their Drug Resistance – Programme and Abstracts; Rostyslaw Stoika et al, Eds.) Sept 11 – 14, 2003.  Lviv, Ukraine (former Lwow, Poland). pp. 10 – 31 [15 Figs., in: http://www.lwow.home.pl/Weigl/in-memoriam.html  (in English) http://www.lwow.home.pl/tyfus.html http://www.lwow.home.pl/weigl.html] ISBN 966-655-099-1; SPOLOM Publishers, Lviv, Ukraine, e-mail: spolom@sc.net.ua http://www.lwow.home.pl/Weigl/in-memoriam.html
http://wwwzenger.informatik.tu-muenchen.de/~huckle/mathwar.html -- Banach -- Weigl_Lwow_2003_4.pdf page 13

Szybalski, W., 2007. Celebration of life of Rudolf S. Weigl (1883-1957), A Leopolitan conqueror of typhus:  50th Aniversary of his passing. In:  Polish Academy of Sciences. Division II, Biological Sciences, The Committee on Microbiology, 2nd Polish-Ukrainian Weigl Conference. Microbiology in the XXI  Century. Warsaw Agricultural University, SGGW, 24-26 Sept. 2007. pp. 11-33.

2.  KINETICS AND MECHANISM OF CHEMICAL REACTIONS (Copenhagen University)

As a graduate student, Waclaw Szybalski carried out kinetic studies leading to the complete elucidation of the mechanism of the five-step reaction between iodine and azides, as catalyzed by carbon disulfide and other S-2compounds:

Hofman-Bang, N., Szybalski, W., 1949.  Determination of carbon disulphide in aqueous solution.  Acta Chem. Scand. 3, 926-929.

Hofman-Bang, N., Szybalski, W., 1949.  The iodine-azide reaction.  II. The catalytic effect of carbon disulphide.  Acta Chem. Scand. 3, 1418-1429.

Szybalski, W., 1950.  Kinetyka i mechanizm reakcji chemicznych (Kinetics and mechanism of chemical reactions).  Wiadomosci Chemiczne 4, 193-213.  (in Polish)

3.  YEAST GENETICS (Carlsberg Laboratory)

Inspired by the 1941-42 lectures and laboratory course by Prof. Adolf Joszt [the Chairman of the Department of Industrial Fermentation and Biotechnology, Division of Chemical Engineering, Lwów Institute of Technology (Politechnika Lwowska), Lwów, Poland], Dr.  W. Szybalski's  scientific interest shifted from chemistry to microbial  genetics, and he carried out pedigree analysis of the genetic crosses between Saccharomyces cerevisiae and Saccharomyces chevalieri.  These studies were carried out in 1947-1949 at the Carlsberg Laboratory in Copenhagen in the laboratory of Prof. Ø. Winge, the pioneer and father of the yeast genetics.

Szybalski, W., 2001. My road to Øjvind Winge, the  father of yeast genetics.  Genetics 158, 1-6.

4.     PSEUDOMONAS (Gdansk Institute of Technology)

W. Szybalski studied the genus Pseudomonas, and isolated and classified a new subspecies of Pseudomonas perolens  var. Gdansk (listed in Bergey's Manual).  This work  was done in  Gdansk University of Technology (Politechnika Gdanska) and was completed at the Danish Institute of Technology, Copenhagen:

Szybalski, W., 1950.  A comparative study of bacteria causing mustiness in eggs.  Nature 165, 733-734.

5.     MICROBIOLOGICAL CORROSION OF IRON (Copenhagen University)

At the same time, W. Szybalski studied the causes of corrosion of steel water pipes in the Copenhagen water system.  He found that this type of corrosion was caused by iron bacteria (Leptothrix ochracea).  He elucidated the mechanism of the corrosion by being able to reproduce it in laboratory by constructing differential-aeration electric cells, where iron bacteria caused an 0.4 volt electric potential.  He developed a method of blocking this corrosion by flushing the system with polyphosphates.  This saved the water system of Copenhagen from the serious problems of corrosion and pipe perforation.  These studies were first published in 1949-1950:

Olsen, E., Szybalski, W., 1949.  Aerobic microbiological corrosion of water pipes.  I-II.  Acta Chem. Scand. 3, 1094-1116.

Mansa, J.L., Szybalski, W., 1950.  Corrosion due to tuberculation in water systems.  I. The effect of Calgon on the potential of iron electrodes in differential aeration cells with running tap water.  Acta Chem. Scand. 4, 1275-1292.

Mansa, J.L., Szybalski, W., 1950.  Corrosion due to tuberculation in water systems.  II. The effect of Calgon on the potential of zinc and copper electrodes in differential aeration cells with running tap water.  Acta Chem. Scand. 4, 1293-1299.

Subsequently these papers were updated by W. Szybalski and  re-published in the U.S.A. by request of the Editor of the journal "Corrosion" and with the author's permission:

Olsen, E., Szybalski, W., 1950.  Aerobic microbial corrosion of water pipes (revised reprint from Acta Chem. Scand. 3, 1094-1116, with addendum; published by invitation).  Corrosion 6, 405-414, 1950.

Mansa, J.L., Szybalski, W., 1952.  Corrosion due to tuberculation in water systems.  Parts I and II. (revised reprint from Acta Chem. Scand. 4, 1094-1292, 1950, with addendum; published by invitation).  Corrosion 8, 381-390.

Szybalski, W., 1951.  Reply to the discussion of F.N. Speller pertaining to the paper of E. Olsen and W. Szybalski:  "Aerobic microbiological corrosion of water pipes" - Corrosion 6, 405-414, 1950.  Corrosion 7, 109.

A review of this work was published in Poland in the journal:  "Industrial Chemistry".

Szybalski, W., 1951.  Korozja punktowa w roztworach wodnych (Spot corrosion in aequous solutions).  Przemysl Chemiczny 7, 88-93.  (in Polish, English summary)

6.  D.Sc. THESIS

Dr. Szybalski received his D.Sc. degree in 1949 at the Gdansk University of Technology (Politechnika Gdanska), Gdansk, Poland. His D.Sc. thesis was partially published as:

Szybalski, W., 1949. Determination of Total Carbon by Wet Combustion Method, Adapted to Investigation of Microbial Metabolism. Bull. Inst. Marine & Tropical Med., Med. Acad. Gdansk 2, 163-171.

7.  GENETICS OF DRUG RESISTANCE (Cold Spring Harbor Laboratories)

     7(1).     RESISTANCE, CROSS-RESISTANCE and COLLATERAL SENSITIVITY

In the summer of 1951, just after joining Cold Spring Harbor Laboratories, Dr. W. Szybalski invented the rapid determination of even small differences in antibiotic susceptibilities for various bacterial strains: Szybalski, W., 1952.  Gradient plate technique for study of bacterial resistance.  Science 116, 46-48.

Anonymous (prepared in cooperation with Barbara McClintock, M. Demerec and W. Szybalski) 1954, From PEA to DNA. . Spectrum Pfizer. J. Am. Med. Assoc. 154, Feb. 20 (No. 8 ADV). Cover page and pp. 23-25 (contains large photo of the Staff Meeting in Cold Spring Harbor, NY. {M. Demerec, A. Hershey, B. Wallace, J. King, E. Witkin, D. Frazer, V. Bryson, H. Moser, W. Szybalski and others}

Anonymous (prepared in cooperation with B. Wallace, J. King, V. Bryson and W. Szybalski) 1954, Long Island Biological Laboratory. Spectrum Pfizer. J. Am. Med. Assoc. 154, March 20 (No.12 ADV). pp. 25-27 (contains photos of gradient Petri plate {W. Szybalski p.26); of Szybalski’s concept of Multiple Chemotherapy in tuberculosis (p. 27); and of gracious old buildings (Nichols Laboratory, with Jill Hershey and W. Szybalski in the foreground).

Making use of this gradient-plate technique, he isolated many drug-resistant mutants and initiated genetics studies of antibiotic resistance, cross resistance and collateral sensitivity in E. coli, Streptococcus aureus, Mycobacteria and Bacilli:

Szybalski, W., Bryson, V., 1952.  Genetic studies on microbial cross resistance to toxic agents.  I. Cross resistance of Escherichia coli to fifteen antibiotics.  J. Bacteriol. 64, 489-499.

Szybalski, W., 1953.  Genetic studies on microbial cross resistance to toxic agents.  II. Cross resistance of Micrococcus pyogenes var. aureus to thirty-four antimicrobial agents.  Antibiotics & Chemother. 3, 1095-1103.

Szybalski, W., Bryson, V., 1954.  Genetic studies on microbial cross-resistance to toxic agents.  III. Cross-resistance of Mycobacterium ranae to twenty-eight antimycobacterial agents.  Am. Rev. Tubercul. 69, 267-279.

Szybalski, W., 1954.  Genetic studies on microbial cross resistance to toxic agents.  IV. Cross resistance of Bacillus magaterium to forty-four antimicrobial agents.  Applied Microbiol. 2, 57-63.

Szybalski, W., Bryson, V., 1955.  Origin of drug resistance in microorganisms.  In:  Origin of Resistance to Toxic Agents.  Sevag, M.G., Reid, R.D., Reynolds, O.E., Eds.  Academic Press, New York, pp. 20-41.

Bryson, V., Szybalski, W., 1955. Microbial drug resistance. Adv. Genet. 7, 1-46.

      7(2).     MULTIPLE DRUG THERAPY

Dr. W. Szybalski proposed and strongly advocated the use of suitably designed "multiple antibiotic therapy" based on his study of the rate of resistance development to two or more antibiotics.  Multiple drug chemotherapy was very successful in the treatment of tuberculosis and childhood leukemias:

Grace, E.J., Bryson, V., Szybalski, W., Demerec, M., 1952.  Potential danger of isoniazid resistance through failure to use multiple chemotherapy in treatment of tuberculosis.  J. Amer. Med. Assoc. 149, 1241.

Szybalski, W., Bryson, V., 1953.  One step resistance development to isoniazid and sodium-p-aminosalicylate.  J. Bacteriol. 66, 468-469.

Szybalski, W., 1953.  Multiple chemotherapy and antagonism between antimicrobial agents.  Riassunti delle Comunicazione, VIth Congresso Int. Microbial., Roma, Italy, 1, 318-319.

Szybalski, W., 1956.  Theoretical basis of multiple chemotherapy.  Tuberculology 15, 82-85.

Anonymous (prepared in cooperation with V. Bryson and W. Szybalski) 1954, Long Island Biological Laboratory. Spectrum Pfizer. J. Am. Med. Assoc. 154 (No.12 ADV). pp. 25-27 (contains photos of gradient Petri plate (W. Szybalski p.26); of Szybalski’s concept of Multiple Chemotherapy in tuberculosis (p. 27); and of gracious old buildings (Nichols Laboratory, with Jill Hershey and W. Szybalski in the foreground).

8.  GENETICS OF STREPTOMYCES (Rutgers University)

Dr. Szybalski was among the first to demonstrate genetic exchange in  antibiotic-producing Streptomyces (heterokaryons, recombinants):

Braendle, D.H., Szybalski, W., 1957.  Genetic interaction among Streptomycetes:  heterokaryosis and synkaryosis.  Proc. Natl. Acad. Sci. 43, 947-955.

Szybalski, W., 1958.  Genetics of Streptomyces fradiae.  In:  Neomycin, Its Nature and Practical Application.  Waksman, S.A., Ed.  Williams and Wilkins, Baltimore pp. 44-48.

Braendle, D.H., Gardiner, B., Szybalski, W., 1959.  Heterokaryotic compatibility of Streptomyces.  J. Gen. Microbiol. 20, 442-450.

Braendle, D.H., Szybalski, W., 1959.  Heterokaryotic compatibility, metabolic cooperation and genic recombinations in Streptomyces.  Ann. N. Y. Acad. Sci. 81, 824-851.

Dr. Szybalski has organized and published (edited) the first ever International Conference on the "Genetics of Streptomyces":

Szybalski, W., Editor, 1959.  Genetics of Streptomyces and other antibiotic-producing microorganisms.  N. Y. Acad. Sci. 81, Art. 4, 805-1016.

9.  MUTAGENESIS (Rutgers University)

     9(1).     SPOT TEST FOR MUTAGENS

Dr. Szybalski and his collaborators studied the mechanism of mutagenesis.  First, they developed the "paper disc mutagenicity test",  which was later adopted in so-called "Ames test":

Iyer, V.N., Szybalski, W., 1958.  Two simple methods for the detection of chemical mutagens.  Appl. Microbiology 6, 23-29.

Using these methods, Dr. Szybalski has surveyed 431 chemical compounds, and found that 5.1% of them were effective mutagens.

Szybalski, W., 1958.  Observations on chemical mutagenesis in microorganisms.  Annals N. Y. Acad. Sci. 76, 475-489.

     9(2).     MECHANISMS OF CHEMICAL MUTAGENESIS

He studied the mechanism of chemical mutagenesis:

Iyer, V.N., Szybalski, W., 1958.  The mechanisms of chemical mutagenesis.  I. Kinetic studies on the action of triethylene melamine (TEM) and azaserine.  Proc. Natl. Acad. Sci. 44, 446-456.

Steinman, I.D., Iyer, V.N., Szybalski, W., 1958.  The mechanism of chemical mutagenesis.  II. Interaction of selected compounds with manganous chloride.  Arch. Biochem. Biophys. 76, 78-86.

Szybalski, W., Pitzurra, M., 1959.  The mechanism of chemical mutagenesis.  III. Induced mutations in spheroplasts of Escherichia coli.  J. Bact. 77, 621-622.

Iyer, V.N., Szybalski, W., 1959.  Mutagenic effect of azaserine in relation to azaserine resistance in Escherichia coli.  Science 129, 839-840.

Szybalski, W., 1960.  The mechanism of chemical mutagenesis with special reference to triethylene melamine action.  In:  Developments in Industrial Microbiology.  Miller, B.M., Ed.  Plenum Press, New York 1, 231-241.

Lorkiewicz, Z., Szybalski, W., 1960.  Genetic effects of halogenated thymidine analogs incorporated during thymidylate synthetase inhibition.  Biochem. Biophys. Res. Comm. 2, 413-418.

Lorkiewicz, Z., Szybalski, W., 1961.  Mechanism of chemical mutagenesis.  IV. Reaction between triethylene melamine and nucleic acid components.  J. Bacteriol. 82, 195-201.

     9(3).     MUTAGENESIS IN SPHEROPLASTS

Dr. Szybalski studied the formation of spheroplasts and mutagenesis in sphaeroplasts:

Kohn, A., Szybalski, W., 1959.  Lysozyme spheroplasts from thawed Escherichia coli cells.  Bacteriol. Proc., 126-127.

Pitzurra, M., Szybalski, W., 1959.  Formation and multiplication of spheroplasts of Escherichia coli in the presence of lithium chloride.  J. Bact. 77, 614-620.

Szybalski, W., Pitzurra, M., 1959.  The mechanism of chemical mutagenesis.  III. Induced mutations in spheroplasts of Escherichia coli.  J. Bact. 77, 621-622.

10.     MUTAGENESIS VERSUS CARCINOGENESIS (McArdle Laboratory, University of Wisconsin)

In these studies it was shown that proximal carcinogens are mutagenic in vitro toward transforming DNA.  This provided the first direct proof for causative relationship between mutagenesis and carcinogenesis.

Maher, Sr. V.M., Miller, E.C., Miller, J.A., Szybalski, W., 1968.  Mutations and decreases in density of transforming DNA produced by derivatives of the carcinogens 2-acetylaminofluorene and N-methyl-4-aminoazobenzene.  Molec. Pharmacol. 4, 411-426.

11.     MUTAGENESIS OF HUMAN CELLS

Dr. Szybalski also studied mutagenesis in human cell lines:

Szybalski, W., Smith, M.J., 1959.  Effect of ultraviolet light on mutation to 8-azaguanine resistance in a human cell line.  Fed. Proc. 18, 336.

Szybalski, W., Ragni, G., Cohn, N.K., 1964.  Mutagenic response of human somatic cell lines.  In:  Cytogenetics of Cells in Culture.  Harris, R.J.C., Ed.  Symposia of the International Society for Cell Biol., Academic Press 3, 209-221.

12.     RADIOSENSITIZATION

While studying mutagenic interacions between radiation and thymidine analogues, Dr. Szybalski discovered radiosensitization of bacterial and also human cells by the incorporation of  5-bromo- or 5-iododeoxyuridine into cell DNA.  This principle was used for many purposes, including enhancement of radiotherapy of cancers:

Szybalski, W., Djordjevic, B., 1960.  Radiosensitization of human cells by partial 5-bromodeoxyuridine substitution of the DNA component.  Proc. Amer. Assoc. Cancer Res. 3, 155.

Djordjevic, B., Szybalski, W., 1960.  Genetics of human cell lines.  III. Incorporation of 5-bromo-, and 5-iododeoxyuridine into the deoxyribonucleic acid of human cells and its effect on radiation sensitivity.  J. Exper. Med. 112, 509-531.

Erikson, R.L., Szybalski, W., 1961.  Molecular radiobiology of human cell lines.  I. Comparative sensitivity to X-rays and ultraviolet light of cells containing halogen-substituted DNA.  Biochem. Biophys. Res. Comm. 4, 258-261.

Ragni, G., Szybalski, W., 1962.  Molecular radiobiology of human cell lines.  II. Effects of thymidine replacement by halogenated analogues on cell inactivation by decay of incorporated radiophosphorus.  J. Mol. Biol. 4, 338-346.

Erikson, R. L., Szybalski, W., 1963.  Molecular radiobiology of human cell lines.  III. Radiation sensitizing properties of 5-iododeoxyuridine.  Cancer Res. 23, 122-130.

Erikson, R.L., Szybalski, W., 1963.  Molecular radiobiology of human cell lines.  V.   Comparative radiosensitizing properties of  5-halodeoxycytidines and 5-halodeoxyuridines.  Radiation Res. 20, 252-262.

Szybalski, W., 1962.  Properties and applications of halogenated deoxyribonucleic acids.  In:  The Molecular Basis of Neoplasia (A Collection of Papers Presented at the Fifteenth Annual Symposium on Fundamental Cancer Research, 1961).  University of Texas Press, Austin, pp. 147-171.

The principle of radiosensitization was used to study the mechanism of DNA replication in phage  øX174:     

Kozinski, A.W., Szybalski, W., 1959.  Dispersive transfer of the parental DNA molecule to the progeny of phage øX-174.  Virology 9, 260-274.

Szybalski, W., 1959.  Discussion (Mode of DNA replication in phage øX-174), Structure and Function of Genetics Elements.  Brookhaven Symposia in Biology No. 12, 32-34.

13.     THYMINE-LESS DEATH

Dr. Szybalski also elucidated the mechanism of "thymine-less death", due to single-strand breakage of DNA, which  was found to lose its transforming activity:

Mennigmann, H.D., Szybalski, W., 1962.  Transforming activity of DNA isolated from bacteria undergoing "thymine-less" death.  Bacteriol. Proc., 43.

Mennigmann, H.D., Szybalski, W., 1962.  Molecular mechanism of thymine-less death.  B. B. Res. Comm. 9, 398-404.

14.     TRANSFORMING  ACTIVITY OF  5-BROMOURACIL-CONTAINING DNA

Dr. Szybalski showed that transforming DNA labeled bifilarly (in both strands) by 5-bromodeoxyuridine retained its biological transforming activity:

Szybalski, W., Opara-Kubinska, Z., Lorkiewicz, Z., Ephrati-Elizur, E., Zamenhof, S., 1960.  Transforming activity of deoxyribonucleic acid labelled with 5-bromouracil.  Nature 188, 743-745.

15.     DNA AS A PRINCIPAL TARGET OF RADIATION

Using the above principle, Dr. Szybalski provided definitive proof that DNA is a principal target of radiation, by showing that in vivo incorporation of 5-bromodeoxyuridine into DNA results in a parallel increase in radiosensitivity of:  (1) isolated transforming DNA, as assayed by radiosensitivity of its transforming activity, and (2) entire cells, as measured by their survival:

Szybalski, W., Opara-Kubinska, Z., 1961.  DNA as principal determinant of cell radiosensitivity.  Radiation Res. 14, 508-509.

Opara-Kubinska, Z., Lorkiewicz, Z., Szybalski, W., 1961.  Genetic transformation studies.  II. Radiation sensitivity of halogen labeled DNA.  Biochem. Biophys. Res. Comm. 4, 288-291.

Szybalski, W., Lorkiewicz, Z., 1962.  On the nature of the principal target of lethal and mutagenic radiation effects.  In:  Strahleninduzierte Mutagenese - Erwin-Baur-Gedächtnisvorlesungen II, 1961.  Stubbe, H. (Ed.),  Abhandlungen d. Deutschen Akademie d. Wissenschaften zu Berlin, Klasse fur Medizin 1, 63-71.

Opara-Kubinska, Z., Borowska, Z., Szybalski, W., 1963.  Genetic transformation studies.  III. Effect of UV light on the molecular properties of normal and halogenated DNA.  Biochim. Biophys. Acta 72, 298-309.

16.     IN VITRO ENZYMATIC SYNTHESIS OF BIOLOGICALLY FUNCTIONAL DNA

The 1961/62 experiments of Litman and Szybalski were the first demonstration that the crude E. coli  DNA polymerase, as prepared by Dr. R. Litman, can synthesize in vitro the biologically active transforming DNA.  Bifilarly 5-bromodeoxy-uridine (BUdR)-labeled transforming DNA was used in vitro as a template in enzymatic replication using only normal triphosphates.  After two rounds of replication, the totally BUdR-free DNA was isolated by CsCl-density gradient centrifugation, and this template-free product was shown to have transforming activity.  [John Cairns, when summarizing the 33th Cold Spring Harbor Symposium, said that biology should be divided into two periods:  one before and one after the Litman & Szybalski (1963) experiment]:

Litman, R.M., Szybalski, W., 1963.  Enzymatic synthesis of transforming DNA.  Biochem. Biophys. Res. Comm. 10, 473-481.

17.     GENETICS AND MOLECULAR BIOLOGY OF HUMAN CELL LINES

After deciding to study the genetics of human cells and choosing for that purpose the bone-marrow cell lines (D98 or Detroit 98), Dr. W. Szybalski made the following contributions:

     17(1).     MUTANTS AND MUTATION RATES

He had isolated many mutant lines and determined mutation rates.  He also developed a colorimetric procedure, based on methylene blue binding and elution, to follow the cell growth on the dish surface, and improved several methods for maintaining the human cell lines:

Szybalski, W., Smith, M.J., 1959.  Genetics of human cell lines.  I. 8-Azaguanine resistance, a selective "single-step" marker.  Proc. Soc. Exp. Biol. Med. 101, 662-666.

Szybalski, W., 1959.  Genetics of human cell lines.  II. Method for determination of mutation rates to drug resistance.  Exp. Cell Res. 18, 588-591.

Szybalski, W., Ragni, G., Cohn, N.K., 1964.  Mutagenic response of human somatic cell lines.  In:  Cytogenetics of Cells in Culture.  Harris, R.J.C., Ed.  Symposia of the International Society for Cell Biol., Academic Press 3, 209-221.

Ragni, G., Szybalski, W., Borowski, E., Schaffner, C.P., 1961.  N-acetylcandidin, a water-soluble polyene antibiotic for prophylaxis and decontamination of tissue cultures.  Antibiotics & Chemotherapy 11, 797-799.

     17(2).     HPRT MUTANTS; BIOCHEMICAL BASIS

For 8-azahypoxanthine-resistant mutants, he showed that they were missing hypoxanthine phosphoribosyl transferase (HPRT [or the old name IMPPase]):

Szybalski, W., Szybalska, E.H., Brockman, R.W., 1961.  Biochemical basis of sequential mutations toward resistance to purine analogs in human cell lines.  Proc. Amer. Assoc. Cancer Res. 3, 272.

     17(3).     HAT SELECTION AND HAT MEDIUM

Based on the pathways of purine synthesis, Dr. Szybalski developed a novel kind of selection, and named it HAT (hypoxanthine + aminopterine + thymidine).  HAT medium permits one to isolate even very rare HPRT+ cells among HPRT cells:

Szybalski, W., Szybalska, E.H., 1961.  Selective systems for measuring forward and reverse mutation rates involving loss and gain of enzyme in human cell lines.  V International Congress of Biochemistry.  Abstracts and Communications.  Moscow, 10-16 August 1961.  Pergamon Press Ltd., Oxford, and Panstwowe Wydawnictwo Naukowe, Warsaw, p. 411.

Szybalski, W., Szybalska, E.H., Ragni, G., 1962.  Genetic studies with human cell lines.  National Cancer Institute Monograph No. 7, 75-89.

Szybalski, W., 1983.  Old HAT.  Science News 124, 147.

HAT medium is widely used, and led to the development of monoclonal antibodies by Kohler and Millstein, for which they were awarded the 1984 Nobel Prize.

     17(4).     GENETIC TRANSFORMATION OF HUMAN CELLS, HYBRIDOMAS AND GENE THERAPY

To demonstrate for the first time the DNA-mediated transformation of human cells (from HPRT to HPRT+ phenotype and genotype), Dr. Szybalski has used HAT selection and  DNA carrying parts of the HPRT+  gene. These experiments were seminal for the future gene therapy (the term coined and used by Dr. Szybalski since 1962):

Szybalska, E.H., Szybalski, W., 1962.  Genetics of human cell lines.  IV. DNA mediated heritable transformation of a biochemical trait.  Proc. Natl. Acad. Sci. 48, 2026-2034.

Szybalski, W., 1963.  DNA-mediated genetic transformation of human cell lines.  Proc. 12th Ann. Session Natl. Poultry Breeder's Roundtable, Kansas City, pp. 90-109.

The paper above described the effect of Ca·phosphate precipitation on the transformation of mammalian cells.

He also demonstrated HPRT+ hybridoma formation between HPRT  D98/AH-2 cells and freshly explanted human skin cells:

Szybalski, W., 1964.  Drug resistance as a genetic marker.  In:  Somatic Cell Genetics.  Krooth, R. S., Ed.  Fourth Macy Conference on Genetics, Univ. of Michigan Press, Ann Arbor, pp. 226-252.

Szybalski, W., Szybalska, E.H., 1962.  Drug sensitivity as a genetic marker for human cell lines.  Univ. of Michigan Medical Bulletin 23 (1962) 227-293; and In:  Approaches to the Genetic Analysis of Mammalian Cells.  Michigan Conference in Genetics.  Merchant, D. and Neel, J.V., Eds.  The University of Michigan Press, Ann Arbor, MI, pp. 11-27.

Thilly, W. G., Lozeron, H. A., and Szybalski, W., 1973. Attempts to Transform Mammalian Cells with DNA of Phage ø80dsuIII Carrying the Thymidine Kinase Gene. In: L. G. Silvestri (Ed.), Possible Episomes in Eukaryotes (Proceedings of the Fourth International Lepetit Collo­quium, Cocoyoc, Mexico, 1972), pp. 250-254.  Amsterdam:  North Holland Publ. Co., 1973.

The experiments described above are considered to be forerunners of monoclonal antibody-producing hybridomas and gene therapy:

Szybalski, W., 1992.  Roots:  Use of the HPRT  gene and the HAT selection technique in DNA-mediated transformation of mammalian cells:  first steps toward developing hybridoma techniques and gene therapy.  BioEssays 14, 495-500.

Szybalski, W., 1991.   A forerunner of monoclonal antibodies and human gene therapy (This Week's Citation Classic.  Szybalska, E.H., Szybalski, W., Genetics of human cell lines.  IV. DNA-mediated heritable transformation of a biochemical trait.  Proc. Natl. Acad. Sci., U.S.A. 48, 2026-2034.  Current Contents 34 No. 46, 11, 1991.

     17(5).     SEMICONSERVATIVE MODE OF HUMAN DNA REPLICATION

Dr. Szybalski has demonstrated that the replication of human DNA is semiconservative:

Djordjevic, B., Szybalski, W., 1960.  Genetics of human cell lines.  II. Incorporation of 5-bromo-, and 5-iododeoxyuridine into the deoxyribonucleic acid of human cells and its effect on radiation sensitivity.  J. Exper. Med. 112, 509-531.

18.     DNA CROSSLINKING BY ANTIBIOTICS

Dr. W. Szybalski was the first to show that some antibiotics (mitomycin C and porfiromycin) can crosslink complementary DNA chains in vivo.  He unraveled the chemistry of mitomycin activation by its enzymatic or chemical reduction, and of DNA crosslinking (mediated by carbonium ions):

Iyer, V.H., Szybalski, W., 1963.  A molecular mechanism of mitomycin action:  linking of complementary DNA strands.  Proc. Natl. Acad. Sci. 50, 355-362.

Iyer, V.N., Szybalski, W., 1964.  Mitomycins and porfiromycin:  chemical mechanism of activation and crosslinking of DNA.  Science 145, 55-58.

Szybalski, W., Iyer, V.N., 1964.  Crosslinking of DNA by enzymatically or chemically activated mitomycins and porfiromycins, bifunctionally "alkylating" antibiotics.  Federation Proc. 23, 946-957.

Szybalski, W., 1964.  Structural modifications of DNA:  crosslinking, circularization and single-strand interruptions.  Abhandlungen d. Deutschen Akad. d. Wissenschaft. zu Berlin, Klasse Med., Nr. 4, 1-19.

19.     HEATING AND MELTING OF DNA

Dr. Szybalski also developed automated equipment to study the melting transitions (temperature) for DNA:

Szybalski, W., Mennigmann, H.D., 1962.  The recording thermospectrophotometer, an automatic device for determining the thermal stability of nucleic acids.  Analyt. Biochem. 3, 267-275.

Szybalski, W., 1967.  Effect of elevated temperatures on DNA and some polynucleotides:  Denaturation, renaturation and cleavage of glycosidic and phosphate ester bonds.  In:  Thermobiology.  Rose, A.H., Ed.  Chapter 4, Academic Press, London, pp. 73-121.

20.     CsCl AND Cs2(SO)4 DENSITY GRADIENT CENTRIFUGATION

Dr. W. Szybalski perfected various aspects of CsCl density gradient centrifugation (including the development of special 4-cell optics for the analytical ultracentifuge) and developed Cs2SO4 density gradient centrifugation for RNA  and DNA:

Szybalski, W., 1960.  Sampling of virus particles and macromolecules sedimented in an equilibrium density gradient.  Experientia 16, 164.

Lozeron, H.A., Szybalski, W., 1966.  Suppression of RNA precipitation during Cs2SO4 density gradient centrifugation.  Biochem. Biophys. Res. Commun., 23, 612-618.

Szybalski, W., Szybalski, E.H., 1971.  Equilibrium density gradient centrifugation.  In:  Procedures in Nucleic Acid Research.  Cantoni, G.L., Davies, D.R., Eds.  Vol. 2, Harper and Row, New York, pp. 311-354.

 Using these techniques he demonstrated the following:

     20(1).     INTERCALATION OF ANTIBIOTICS

Dr. Szybalski showed that the antibiotics of the tetracycline group and ethidium bromide could intercalate into DNA, even at high (7 M) salt concentrations:

Kersten, W., Kersten, H., Szybalski, W., 1966.  Physicochemical properties of complexes between DNA and antibiotics which affect RNA synthesis (actinomycin, daunomycin, cinerubin, nogalamycin, chromomycin, mithramycin, and olivomycin).  Biochemistry 5, 236-244.

     20(2).     PLASMID ISOLATION

Dr. Szybalski, together with Dr. H. Bujard, was the first to apply the above finding for the separation of covalently closed DNA circles (papilloma DNA) from the nicked circles and linear DNA.  This method became a very important and widely used technique for the plasmid isolation.

     20(3).     SEPARATION OF COMPLEMENTARY DNA STRANDS

Dr. Szybalski showed that poly(IG) or poly(UG) binds preferentially to one of the two strands of phage T7 and lambda DNA, which permitted efficient separation of the complementary DNA strands using CsCl + poly(UG) density gradient centrifugation:

Opara-Kubinska, Z., Kubinski, H., Szybalski, W., 1964.  Interaction between denatured DNA, polyribonucleotides, and ribosomal RNA:  attempts at preparative separation of the complementary DNA strands.  Proc. Natl. Acad. Sci. U.S.A. 52, 923-930.

Sheldrick, P., Szybalski, W., 1967.  Distribution of pyrimidine "clusters" between the complementary DNA strands of certain Bacillus bacteriophages.  J. Mol. Biol. 29, 217-228.

Hradecna, Z., Szybalski, W., 1967.  Fractionation of the complementary strands of coliphage  l DNA based on the asymmetric distribution of the poly IG-binding sites.  Virology 32, 633-643.

Summers, W.C., Szybalski, W., 1968.  Size, number, and distribution of poly G binding sites on the separated DNA strands of coliphage T7.  Biochim. Biophys. Acta 166, 371-378.

     20(4).     REPLICATION OF GLUCOSYLATED DNA

Dr. Szybalski showed that glucosylated DNA can be separated from non-modified DNA. Using this technique he was able to study the mechanism of DNA modification and replication in phages containing glucosylated DNA:

Erikson, R.L., Szybalski, W., 1964.  The Cs2SO4 equilibrium density gradient and its application for the study of T-even phage DNA:  glucosylation and replication.  Virology 22, 111-124.

        20(5).     SATELITE DNA

While examining mouse DNA in CsCl gradient, Dr. Szybalski discovered  in 1960 that there is a discrete kind of DNA, which forms a separate satellite band (see Fig. 8b in reference below).  This opened a new field of  “satellite DNA”, currently very important in genomics.

Szybalski, W., 1961/1962.  Properties and Applications of Halogenated Deoxyribonucleic Acids.  In:  The Molecular Basis of Neoplasia, a Collection of Papers Presented at the Fifteenth Annual Symposium on Fundamental Cancer Research, 1961, pp. 147-171. {Fig 8b} . Austin: University of Texas Press, 1962.

Szybalski, W., 1970. Mysterious satellites. Nature 226, 89-90.

21.     5-IODODEOXYURIDINE INCORPORATION INTO PLANTS AND ANIMALS

5-Iododeoxyuridine incorporation was determined not only for cells, but also for plants and animals:

Smith, H.H., Kugelman, B.H., Commerford, S.L., Szybalski, W., 1963.  Incorporation of 5-iododeoxyuridine into DNA of plant cells.  Proc. Natl. Acad. Sci. 49, 451-457.

Clifton, K.H., Szybalski, W., Heidelberger, C., Golin, F.F., Ansfield, F.J., Vermund, H., 1963.  Incorporation of I125-labeled iododeoxyuridine into the deoxyribonucleic acid of murine and human tissues following therapeutic doses.  Cancer Res. 23, 1715-1723.

22.     TRANSCRIPTIONAL MAPPING

22(1). PHAGE T7

Preparative separation of DNA strands of the T7 and lambda (l) phages permitted Dr. Szybalski to study transcription from individual strands, at the time when there was a general belief that there is only one "sense" (=transcribed) strand of DNA.  Dr. Szybalski found that for T7 phage, indeed, only one strand is transcribed:

Summers, W.C., Szybalski, W., 1968.  Totally asymmetric transcription of coliphage T7 in vivo:  correlation with poly G binding sites.  Virology 34, 9-16.

22(2). PHAGES LAMBDA AND T4

However, Dr. Szybalski found that for lambda DNA both strands were transcribed (this finding was iconoclastic at that time and very important for determining the orientation of genes and operons by physical means):

Hradecna, Z., Szybalski, W., 1967.  Fractionation of the complementary strands of coliphage  l DNA based on the asymmetric distribution of the poly I,G-binding sites.  Virology 32, 633-643.

Taylor, K., Hradecna, Z., Szybalski, W., 1967.  Asymmetric distribution of the transcribing regions on the complementary strands of the coliphage l  DNA.  Proc. Natl. Acad. Sci., U.S.A. 57, 1618-1625.

Dr. Szybalski rapidly extended these studies to preparing a detailed transcriptional map of DNA by:

     (a)     Determining the orientation of transcription, by hybridization to separated DNA strands:

Szybalski, W., Bøvre, K., Fiandt, M., Guha, A., Hradecna, Z., Kumar, S., Lozeron, H.A., Maher, V.M.,Sr., Nijkamp, H.J.J., Summers, W.C., Taylor, K., 1969.  Transcriptional controls in developing bacteriophages.  J. Cell. Physiol. 74, Supplement 1, 33-70.

     (b)     Determining which region is transcribed, by using (i) DNA fragments obtained by shear, and (ii) various deletion mutants of phage lambda:

Nijkamp, H.J.J., Bøvre, K., Szybalski, W., 1970.  Controls of rightward transcription in coliphage l.  J. Mol. Biol. 54, 599-604.

Kumar, S., Bøvre, K., Guha, A., Hradecna, Z., Maher, V.M., Sr., Szybalski, W., 1969.  Orientation and control of transcription in E. coli phage l.  Nature 221, 823-825.

23.     MAPPING BY ELECTRON MICROSCOPY

     23(1). HETERODUPLEX GENOME MAPPING

     (a) In collaboration with Dr. H. Ris's laboratory, Dr. Szybalski developed heteroduplex mapping by electron microscopy of DNA in 50% formamide, permitting the measuring of both the single-stranded and double-stranded region of heteroduplexes:

Westmoreland, B.C., Szybalski, W., Ris, H., 1969.  Mapping of deletions and substitutions in heteroduplex DNA molecules of bacteriophage lambda by electron microscopy.  Science 163, 1343-1348.

     (b)  This technique permitted the most precise at that time physical mapping of deletions, insertions, and substitution, and thus provided correlation between genetic maps and physical or transcriptional maps for phage lambda and other genomes:

Hradecna, Z., Szybalski, W., 1969.  Electron micrographic maps of deletions and substitutions in the genomes of transducing coliphages ldg and lbio.  Virology 38, 473-477; and 40, 178, 1970.

     (c)  Heteroduplex mapping permitted one to compare the physical and transcriptional maps of phages l, 434 and ø80:

Lozeron, H.A., Szybalski, W., 1969.  Congruent transcriptional controls and heterology of base sequences in coliphage l and ø80.  Virology 39, 373-388.

Fiandt, M., Hradecna, Z., Lozeron, H.A., Szybalski, W., 1971.  Electron micrographic mapping of deletions, insertions, inversions, and homologies in the DNAs of coliphages lambda and phi80.  In:  The Bacteriophage Lambda.  Hershey, A.D., Ed.  Cold Spring Harbor Laboratories, Cold Spring Harbor, pp. 329-354.

Wilgus, G. S., Mural, R. J., Friedman, D. I., Fiandt, M., Szybalski, W., 1973. limml434: a phage with a hybrid immunity region. Virology 56, 46-53.

     23(2). VISUALIZATION OF EVOLUTION   

Szybalski, W., Szybalski, E. H., 1974.  Visualization of the evolution of viral genomes.  In:  E. Kurstak and K. Maramorosch (Eds.), Viruses, Evolution and Cancer, pp. 563-582.  New York:  Academic Press.

     23(3). MAPPING OF RNA POLYMERASE BINDING SITES

Vollenweider, H. J., Szybalski,  W., 1978.  Electron microscopic mapping of RNA polymerase binding to coliphage lambda DNA.  J. Mol. Biol. 123, 485-498.

Vollenweider, H. J., Fiandt, M., Szybalski, W., 1979. A relationship between DNA helix stability and recognition sites for RNA polymerase.  Science 205, 508-511.

24.     THE   "IS"   TRANSPOSITION ELEMENTS

Heteroduplex analysis permitted one to classify the IS insertion sequences and to show that these do not consist of any DNA, but that there are very specific "jumping genes".  The IS1,  IS2,  IS3,  IS4 and IS5  elements were defined:

Fiandt, M., Szybalski, W., Malamy, M.H., 1972.  Polar mutations in lac, gal, and phage l consist of a few IS-DNA sequences inserted with either orientation.  Mol. Gen. Genetics 119, 223-231.

Szybalski, W., 1977.  IS elements in Escherichia coli, plasmids and bacteriophages.  In:  DNA Insertion Elements, Plasmids and Episomes.  Bukhari, A.I., Shapiro, J.S., Adhya, S.L. (Eds.).  Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp. 583-590.

25.     MOLECULAR GENETICS OF PHAGE LAMBDA AND SYNTHETIC BIOLOGY

Dr. Szybalski contributed significantly to the pioneering findings in the molecular genetics of phage lambda, a model for subsequent analogous studies with other viruses. These studies have led him to the creation of a new discipline of SYNTHETIC BIOLOGY [see 25(4)].

     25(1).     TRANSCRIPTION FROM BOTH STRANDS IN THE b2  REGION

For the first time, it was shown that not only both DNA strands are transcribed, but that even the DNA strands opposite of each other, in the b2 region of l, could be transcribed.  The regulatory role for the convergent and overlapping transcription was considered:

Bøvre, K., Szybalski, W., 1969.  Patterns of convergent and overlapping transcription within the b2 region of coliphage l.  Virology 38, 614-626.

     25(2).     ANTI-SENSE mRNA and RNAi

Based on the convergent transcription in the central region of lambda genome (see above), Dr. Szybalski explored for several years (1969-1989) the possibility of using overlapping convergent transcription as a mode the cis and trans controlling transcription (anti-sense mRNA; interfering double-stranded RNA, RNAi). Anti-sense mRNA was producing low if any inhibitory effects (see below), whereas RNAi [produced in plasmids by convergent transcription] was quite effective especially in mammalian cell systems (Szybalski, E., Kubinski H. , Opara-Kubinska, Z., Szybalski, W., unpublished).

Hasan, N., Somasekhar, G., Szybalski, W., 1988.  Antisense RNA does not significantly affect expression of the galK gene of Escherichia coli or the N gene of coliphage lambda.  Gene 72, 247-252.

     25(3).     PHYSICAL MAPPING OF TRANSCRIPTIONAL ELEMENTS

The physical location of various promoters and operators was determined together with the orientation and physical size of several operons:

Szybalski, W., 1976.  Genetic and molecular map of Escherichia coli bacteriophage lambda (l).  In:  Handbook of Biochemistry and Molecular Biology.  Fasman, G.D., Ed.  3rd Ed., Nucleic Acids, Vol. II.  CRC Press, Cleveland, pp. 677-685.

Szybalski, E.H., Szybalski, W., 1979.  A comprehensive molecular map of bacteriophage lambda.  Gene 7, 217-270.

Szybalski, E.H., 1987.  This week's citation classic:  Szybalski, E.H., Szybalski, W., 1979.  A comprehensive molecular map of bacteriophage lambda.  Gene 7, 217-220.  [McArdle Lab. for Cancer Research, University of Wisconsin, Madison, WI  U.S.A.]  Current Contents 30, No. 34, 15.

Daniels, D.L., Schroeder, J.L., Szybalski, W., Sanger, F., Blattner, F.R., 1984.  A molecular map of coliphage lambda.  In:  Genetic Maps 1984, Vol. 3, O'Brien, S.J. (Ed.).  Cold Spring Harbor, NY, Cold Spring Harbor Laboratory, pp. 1-21.

      25(4). SYNTHETIC BIOLOGY
In 1974, as described in Wikipedia,
the Polish geneticist Waclaw Szybalski introduced the term "synthetic biology"[1], writing: Let me now comment on the question "what next". Up to now we are working on the descriptive phase of molecular biology. ... But the real challenge will start when we enter the synthetic biology phase of research in our field. We will then devise new control elements and add these new modules to the existing genomes or build up wholly new genomes. This would be a field with the unlimited expansion potential and hardly any limitations to building "new better control circuits" and ..... finally other "synthetic"organisms, like a "new better mouse". ... I am not concerned that we will run out exciting and novel ideas, ... in the synthetic biology, in general”

When in 1978 the Nobel Prize in Physiology or Medicine was awarded to Arber, Nathans and Smith for the discovery of restriction enzymes, Waclaw Szybalski wrote in an editorial comment in the journal Gene:

“The work on restriction nucleases not only permits us easily to construct recombinant DNA molecules and to analyze individual genes, but also has led us into the new era of synthetic biology where not only existing genes are described and analyzed but also new gene arrangements can be constructed and evaluated.[2]”A. Kohn and A. Shatkay (Eds.), Control of Gene Expression, pp. 23-24, and Discussion pp. 404-405 (Szybalski's concept of Synthetic Biology), pp. 411-412, 415-417. New York: Plenum Press, 1974

Szybalski, W., Skalka, A., 1978. Nobel-prizes and restriction enzymes. Gene 4, 181-182.

Szybalski, W., 2008. History of synthetic biology: witnessing synthetic biology from its beginnings. In: The Fourth International Meeting on Synthetic Biology, "SB-4.0". Hong Kong University of Science and Technology, October 10-12, 2008, pp. 48-50. SB4ProgBook102808.pdf

Borman, S., 2008. Designed Pathways and Microbes. Hong Kong 2008. Synthetic biology aims to generate biofuels, medicines, and novel organisms. Chem. Eng. News, Nov. 17, 2008, 86/46, pp. 62-66.

26.     ORIENTATION OF TRANSCRIPTION FOR BACTERIAL GENES

Dr. Szybalski studied transcription patterns of bacterial genes "naturally cloned" in phage l.  He determined the orientation of the gal, trp, lacI and lacZYA  operons, the tRNA gene and ribosomal genes, among others:

Guha, A., Tabaczynski, M., Szybalski, W., 1968.  The orientation of transcription for the galactose operon as determined by hybridization of gal mRNA with the separated DNA strands of coliphage ldg.  J. Mol. Biol. 35, 207-213.

Kumar, S., Szybalski, W., 1969.  The orientation of transcription of the lac operon and its repressor gene i in Escherichia coli.  J. Mol. Biol. 40, 145-151.

Lozeron, H.A., Szybalski, W., Landy, A., Abelson, J., Smith, J.D., 1969.  Orientation of transcription for the amber suppressor gene suIII as determined by hybridization between tyrosine tRNA and the separated strands of transducing coliphage ø80dsuIII.  J. Mol. Biol. 39, 239-243.

Miller Jr., R. C., Besmer, P., Khorana, H. G., Fiandt, M., Szybalski, W., 1971.  Studies on polynucleotides,  XCVII. Opposing orientations and location of the su+III gene in the transducing coliphages ø80psu+III and ø80dsu+IIIsu-III.  J. Mol. Biol. 56, 363-368.

Fiandt, M., Szybalski, W., Blattner, F.R., Jaskunas, S.R., Lindahl, L., Nomura, M., 1976.  Organization of ribosomal protein genes in Escherichia coli.    I. Physical structure of DNA from transducing l phages carrying genes from the aroE-str region.  J. Mol. Biol. 106, 817-835.

The first example of a divergent bacterial operon was the bio operon which is transcribed from both strands (bioA leftward and bioB-F rightward):

Guha, A., Saturen, Y., Szybalski, W., 1971.  Divergent orientation of transcription from the biotin locus.  J. Mol. Biol. 56, 53-62.

Kotval, J., Campbell, A., Konopa, G., Szybalski, W., 1982.  Leftward transcription in Escherichia coli bio operon does not require products of the rightward transcript.  Gene 17, 219-222 [and Erratum in 18, 366].

A complete map of the bio operon(s) was prepared:

Szybalski, E.H., Szybalski, W., 1982.  A physical map of the Escherichia coli bio operon.  Gene 19, 93.

27.     IN VITRO ENZYMATIC TRANSCRIPTION

Combining in vivo and in vitro transcription, Dr. W. Szybalski's laboratory for the first time sequenced the 5'-terminal 200 nucleotides downstream from the major promoters and found that (a) the promoter is not transcribed, and (b) initiation (first 5' nucleotide) is exactly the same in vivo and in vitro:

Blattner, F.R., Dahlberg, J.E., Boettiger, J.K., Fiandt, M., Szybalski, W., 1972.  Distance from a promoter mutation to an RNA synthesis startpoint on bacteriophage l DNA.  Nature New Biol. 237, 232-236.

Dahlberg, J.E., Lozeron, H.A., Szybalski, W., 1972.  Identity of in vivo and in vitro initiation of four phage lambda RNAs.  Bacteriophage Meeting, Cold Spring Harbor, NY, pp. 86.

Szybalski, W., 1974.  In vivo and in vitro initiation of transcription.  In:  Control of Gene Expression.  Kohn, A., Shatkay, A., Eds.  Plenum Press, New York, pp. 23-24; Panel Discussion pp. 404-405, 411-412, 415, 417.

28.     "INTRON" HYPOTHESIS

Two jointly controlled short transcription regions, lit and oop were studied:

Hayes, S., Szybalski, W., 1973.  Control of short leftward transcripts from the immunity and ori regions in induced coliphage lambda.  Mol. Gen. Genetics 126, 275-290.

In conjunction with experiments on the initiation of transcription, these experiments led W. Szybalski to propose that two separate regions could be transcribed in the form of a single mRNA molecule, with the region between them being a non-transcribed "dry run".  This proposal anticipated by several years the concept of "exon" and "intron", with the latter conceptually corresponding to the "dry run" and the resulting "repertoire of topologically different mRNAs from a constant segment of DNA".  These early concepts of "exon" and "intron" are discussed on p. 76 in the paper of:

Szybalski, W., 1972.  Transcription and replication in E. coli bacteriophage lambda.  In:  Uptake of Informative Molecules by Living Cells.  Ledoux, L., Ed.  North-Holland Publ. Co., Amsterdam, pp. 59-82.

and briefly on pp. 234-236 in the paper by:

Blattner, F.R., Dahlberg, J.E., Boettiger, J.K., Fiandt, M., Szybalski, W., 1972.  Distance from a promoter mutation to an RNA synthesis startpoint on bacteriophage l DNA.  Nature New Biol. 237, 232-236.

29.     ORIGIN AND ORIENTATION OF DNA SYNTHESIS

Furthermore, Dr. Szybalski's laboratory in collaboration with Dr. S. Adhya has determined the origin and the bidirectional nature of l DNA replication:

Stevens, W.F., Adhya, S., Szybalski, W., 1971.  Origin and bidirectional orientation of DNA replication in coliphage lambda.  In:  The Bacteriophage Lambda.  Hershey, A.D. (Ed.).  Cold Spring Harbor Laboratories, Cold Spring Harbor, pp. 515-533.

30.     TERMINATION OF TRANSCRIPTION

Many terminator sequences were identified and cloned in Dr. Szybalski's laboratory.  They were and are widely used in many constructs:

Luk, K.-C., Szybalski, W., 1982.  Transcription termination:  sequence and function of the rho-independent tL3 terminator in the major leftward operon of bacteriophage lambda.  Gene 17, 247-258.

Luk, K.-C., Dobrzanski, P., Szybalski, W., 1982.  Cloning and characterization of the termination site tI for the gene int transcript in coliphage lambda.  Gene 17, 259-262.

Luk, K.-C., Szybalski, W., 1982.  Characterization of the cloned terminators tR1, tL3 and tI, and of the nutR antitermination site of coliphage lambda.  Gene 20, 127-134.

Luk, K.-C., Szybalski, W., 1983.  The tL2 cluster of transcription termination sites between genes bet and ral of coliphage lambda.  Virology 125, 403-418.

Luk, K.-C., Szybalski, W., 1983.  A cluster of leftward, rho-dependent tJ terminators in the J  gene of coliphage lambda.  Gene 21, 175-191.

Luk, K.-C., Szybalski, W., 1983.  Tandem transcription-termination sites in the late rightward operon of bacteriophage lambda.  Mol. Gen. Genet. 189, 289-297.

31.     ANTITERMINATION OF TRANSCRIPTION BY THE N/nut  SYSTEM

In Dr. Szybalski's laboratory, several mutants were isolated which define the nutL and nutR antiterminator elements:

Salstrom, J.S., Szybalski, W., 1978.  Coliphage lnutL:  a unique class of mutants defective in the site of gene N product utilization for antitermination of leftward transcription.  J. Mol. Biol. 124, 195-221.

Very extensive studies were carried out on N-mediated antitermination showing that the complete nut element directs antitermination of transcription originating at a variety of promoters.  Variants of nut (truncated or mutated) can work with only some promoters and some terminators.  Rho-independent terminators are generally easier to antiterminate.  Many variants of nut sites were chemically synthesized, at that time one of the first cases of chemical synthesis of transcription-controlling elements:

Salstrom, J.S., Fiandt, M., Szybalski, W., 1979.  N-independent leftward transcription in coliphage lambda:  deletions, insertions and new promoters bypassing termination functions.  Mol. Gen. Genetics 168, 211-230.

Salstrom, J.S., Fiandt, M., Szybalski, W., 1979.  The site controlling the specificity of N action is outside the promoter-operator:  a triple hybrid phage lN21imm434nin5.  Gene 5, 305-327.

Drahos, D., Szybalski, W., 1981.  Antitermination and termination functions of the cloned nutL, N, and tL1 modules of coliphage lambda.  Gene 16, 261-274 [and Errata in 17, 354-355, 1982].

Szybalski, W., Drahos, D., Luk, K.-C., Somasekhar, G., 1983.  Modules for termination and antitermination of transcription in coliphage lambda.  In:  Microbiology—1983, Schlessinger, D. (Ed.).  American Society for Microbiology, Washington, D.C., pp. 35-38.

Drahos, D., Galluppi, G.R., Caruthers, M., Szybalski, W., 1982.  Synthesis of the nutL DNA segments and analysis of antitermination and termination functions in coliphage lambda.  Gene 18, 343-354.

Peltz, S.W., Brown, A.L., Hasan, N., Podhajska, A.J., Szybalski, W., 1985.  Thermosensitivity of a DNA recognition site:  activity of a truncated nutL antiterminator of coliphage lambda.  Science 228, 91-93.

Hasan, N., Szybalski, W., 1986.  Boundaries of the nutL antiterminator of coliphage lambda and effects of mutations in the spacer region between boxA and boxB.  Gene 50, 87-96.

Hasan, N., Szybalski, W., 1986.  Effect of the promoter structure on the transcription antitermination function.  Gene 50, 97-100.

Szybalski, W., Brown, A.L., Hasan, N., Podhajska, A.J., Somasekhar, G., 1987.  Modular structure of the nut and qut antiterminators of transcription.  Interactions between control elements of phage lambda and construction of novel regulatory circuits.  In:  RNA Polymerase and the Regulation of Transcription, Reznikoff, W.S., Burgess, R.R., Dahlberg, J.E., Gross, C.A., Record, M.T., Wickens, M.P. (Eds.).  Elsevier, New York, pp. 381-890.

32.     ANTITERMINATION OF TRANSCRIPTION BY THE LAMBDA Q/qut SYSTEM

Dr. Szybalski found that the Q protein interacts with the qut site, which includes the -10 region of the pR' promoter and about 15 nt of downstream sequence.  Thus, the qut site is coupled with the pR' promoter which differs from the nut antitermination site which does not have to overlap promoters:

Somasekhar, G., Szybalski, W., 1983.  Mapping of the Q-utilization site (qut) required for antitermination of late transcription in bacteriophage lambda.  Gene 26, 291-294.

Szybalski, W., Drahos, D., Luk, K.-C., Somasekhar, G., 1983.  Antitermination:  the lambda system.  Modules for termination and antitermination of transcription in coliphage lambda.  In:  Microbiology—1983.  Schlessinger, D., Ed.  Washington, D.C., American Society of Microbiology, pp. 35-38.

Somasekhar, G., Szybalski, W., 1987.  The functional boundaries of Q-utilization site required for antitermination of late transcription in bacteriophage l.  Virology 158, 414-426.

Kur, J., Hradecná, Z., Hasan, N., Szybalski, W., 1989.  Evaluation of the multistep method for generating BspMI-mediated deletions in studies on the role of the direct 10-bp repeat in the qut-controlled antitermination in phage lambda.  Virology 176, 629-632.

Kur, J., Hradecná, Z., Hasan, N., Szybalski, W., 1990.  The role of the direct repeat in qut-controlled antitermination in phage l.  Virology 176, 629-632.

33.     PROCESSING OF LAMBDA mRNA

The mode of processing of the lambda transcripts was determined in Dr. Szybalski's laboratory, including the role of endonucleolytic cuts and 3'-5' exonucleolytic digestion of  lambda mRNA:

Lozeron, H.A., Dahlberg, J.E., Szybalski, W., 1976.  Processing of the major leftward mRNA of coliphage lambda.  Virology 71, 262-277.

34.     MODIFICATION OF SPECIFICITY OF RESTRICTION ENZYMES

     34(1).     CONVERTING CLASS-IIS RESTRICTION ENZYMES TO ENDONUCLEASES WHICH CUTS AT ANY  PREDETERMINED UNIQUE SITE

The FokI enzyme which is a class-IIS enzyme which recognizes a specific site (5'-AUGCC) and cuts DNA at the 9th and 13th nucleotide (nt) away from this site.  By designing a special oligodeoxynucleotide adaptor, which has a double-stranded 5'-AUGCC domain and a single-stranded DNA in the 9-13-nt region, one could cut any single-stranded DNA complementary to the single-stranded domain of the adaptor:

Szybalski, W., 1985.  Universal restriction endonucleases:  designing novel cleavage specificities by combining adapter oligo-deoxynucleotide and enzyme moieties.  Gene 40, 169-173.

Podhajska, A., Szybalski, W., 1985.  Conversion of the FokI endonuclease to a universal restriction enzyme:  cleavage of phage M13mp7 DNA at predetermined sites.  Gene 40, 175-181.

Kim, S.C., Podhajska, A.J., Szybalski, W., 1988.  Cleaving DNA at any predetermined site with adapter-primers and class-IIS restriction enzymes.  Science 200, 504-506.

Szybalski, W., Kim, S.C., Hasan, N., Podhajska, A.J., 1991.  Class-IIS restriction enzymes – a review.  Gene 100, 13-26.

Podhajska, A.J., Kim, S.C., Szybalski, W., 1992.  [26] Conferring new specificities on restriction enzymes:  cleavage at any predetermined site by combining an adapter oligodeoxynucleotide and a class-IIS enzyme.  Meth. Enzymol. 216, part G, 303-309.

Kim, S. C., Skowron, P. M., Szybalski, W., 1996. Structural requirements for the FokI-DNA interaction and oligonucleotide-instructed cleavage. J. Mol. Biol. 258, 638-649.

   This novel concept was patented:

Szybalski, W., 1990-patent.  Universal restriction endonuclease.  U.S. Patent No. 4, 935, 357 (June 19, 1990) 1-14.

     34(2).     NOMENCLATURE OF RESTRICTION AND MODIFICATION ENZYMES

Dr. Szybalski actively participated in establishing the nomenclature in this field:

Szybalski, W., Blumenthal, R.M., Brooks, J.E., Hattman, S. and Raleigh, E.A., 1988. Nomenclature for bacterial genes coding for class-II restriction endonucleases and DNA modification methyltransferases.  Gene 74, 279-280.  [Proceedings of the New England Biolabs Workshop on Biological DNA Modification, Gloucester, MA (U.S.A.), May 20-23, 1988.]
 
Bestor, H., Bhagwat, S., Blumenthal, M., Brooks, E., Marinus, M. G., Raleigh, E. A., and Szybalski, W. (Eds.), 1995. Proceedings to the Third New England Biolabs Workshop on Biological DNA Modification.  Gene 157, pp. i-xi and 1-341.

Richard J. Roberts, Marlene Belfort, Timothy Bestor, Ashok S. Bhagwat, Thomas A. Bickle, Jurate Bitinaite, Robert M. Blumenthal, Sergey Kh. Degtyarev, David T. F. Dryden, Kevin Dybvig, Keith Firman, Elizaveta S. Gromova, Richard I. Gumport, Stephen E. Halford, Stanley Hattman, Joseph Heitman, David P. Hornby, Arvydas Janulaitis, Albert Jeltsch, Jytte Josephsen, Antal Kiss, Todd R. Klaenhammer, Ichizo Kobayashi, Huimin Kong, Detlev H. Krüger, Sanford Lacks, Martin G. Marinus, Michiko Miyahara, Richard D. Morgan, Noreen E. Murray, Valakunja Nagaraja, Andrzej Piekarowicz, Alfred Pingoud, Elisabeth Raleigh, Desirazu N. Rao, Norbert Reich, Vladimir E. Repin, Eric U. Selker, Pang-Chui Shaw, Daniel C. Stein, Barry L. Stoddard, Waclaw Szybalski, Thomas A. Trautner, James L. Van Etten, Jorge M. B. Vitor, Geoffrey G. Wilson, Shuang-yong Xu, 2003. A nomenclature for restriction enzymes, DNA methyltransferases, homing endonucleases and their genes. Nucleic Acids Research 31, 1805-1812.

     34(3).     ACHILLES' HEEL VERY RARE CLEAVING (AC and RecA-AC)

AC SYSTEMS: Having the restriction enzyme and cognate methyltransferase (MTase), one could select out of many cut sites only one by covering it with a protein or other complex while inactivating all other sites by methylation with the cognate MTase.  The specific covering proteins were various repressors and other proteins which bind to a specific DNA sequence, usually about 20 bp long:

Koob, M., Grimes, E., Szybalski, W., 1988.  Conferring operator specificity on restriction endonucleases.  Science 241, 1084-1086.

Koob, M., Szybalski, W., 1990.  Cleaving yeast and Escherichia coli genomes at a single site.  Science 250, 271-273.

Szybalski, W., 1992.  Modifying specificities of restriction enzymes.  In:  Biotechnology:  Bridging Research and Applications.  Kamely, D., Chakrabarty, A.M., Kornguth, S.E. (Eds.).  Proceedings of the U.S.-Israel Research Conference on Advances in Applied Biotechnology (June 24-30, 1990, Haifa, Israel).  Kluwer Academic Publ., Boston, pp. 371-376.

RecA-AC SYSTEMS: A complex of a 40-nucleotide long oligodeoxynucleotide (an oligo of a specific sequence and carrying a desired restriction site) together with the RecA protein and [g-S]ATP, permits one to occlude any specific sequence homologous to the oligo which will then be protected from methylation by the cognate MTase.  This variant of AC (RecA-AC) is very convenient for physical mapping of genomes by determining the length of DNA fragments (by PFGE) between two adjoining STS'es (sequence-tagged sites):

Koob, M., Burkiewicz, A., Kur, J., Szybalski, W., 1992.  RecA-AC single-site cleavage of plasmids and chromosomes at any predetermined restriction site.  Nucleic Acid Res. 20, 5831-5836.

Szybalski, W., 1997.  RecA-mediated Achilles' heel cleavage.  Curr. Opin. Biotechnol. 8, 75-81.

35.     EXPRESSION VECTORS WITH INVERTIBLE ELEMENTS

This approach permits regulation of the activity of any promoter, including constitutive promoters:

     35(1).     AN INVERTIBLE PROMOTER

This was first accomplished by placing a promoter between the convergent attB and attP sites (from bacteriophage lambda) and orienting it away from the gene to be expressed (this the OFF orientation).  Supplying the Int protein in trans inverts the promoter which results in gene expression (the ON orientation):

Podhajska, A.J., Hasan, N., Szybalski, W., 1985.  Control of cloned-gene expression by promoter inversion in vivo:  construction of the att-p-nutL-att-N module.  Gene 40, 163-168.

Hasan, N., Szybalski, W., 1987.  Control of cloned gene expression by promoter inversion in vivo:  construction of improved vectors with a multiple cloning site and the ptac promoter.  Gene 56, 145-151.

     35(2).     AN INVERTIBLE GENE (THE Int/att  and Flp/FRT  SYSTEMS)

Still better results were obtained with the inversion of the gene to be expressed, against the stationary promoter.  The gene to be expressed was placed between the convergent attB and attP sites and was facing the promoter.  In this OFF phase, only the anti-sense mRNA was transcribed from the gene.  Supplying the Int protein in trans inverts the gene , which results in massive gene expression in this ON phase.  Similarly,  the Flp/FRT system (from the 2 mm plasmid of yeasts) was selected, because it works in all organisms tested including various bacteria, plants and animals, and because is very tightly regulated.  A highly sophisticated plasmid was developed with a two-step control.  On the same plasmid, the FLP gene is controlled by the Ptet promoter and Tet repressor.  In the repressed stage, not enough of Flp protein is produced to cause any FRT-mediated inversion of the gene to be expressed, which is (i) oriented against the stationary promoter, (ii) is located between two convergent FRT sites, (iii) has its 5' end is blocked by four terminators, and (iv) in the OFF phase could be transcribed only in the anti-sense direction. --- In stage one, the Ptet promoter is induced by adding autoclaved chlortetracycline (cTc), which inactivates the Tet repressor, and results in expression of the FLP gene.  In stage two, the Flp protein inverts the gene by acting at two convergent FRT sites, which results in the ON phase and massive gene expression from the stationary promoter:

Hasan, N., Szybalski, W., 1990.  Control of cloned gene expression by its inversion in vivo:  switch from anti-sense to sense mRNA.  Molecular Genetics of Bacteria and Phages.  Cold Spring Harbor, NY, August 21-26, pp. 64.

Sektas, M., Szybalski, W., 1998.  Tightly controlled two-stage expression vectors employing the Flp/FRT-mediated inversion of cloned genes.  Molecular Biotechnology 9, 17-24.

This system was modified by M. Bereta to express genes in mammalian cells.

36.     REGULATORY CIRCUITS

Using elements described above (and below) Dr. Szybalski has constructed many regulatory circuits as models for various biological functions and for gene therapy:

Szybalski, W., 1988.  Construction of novel regulatory circuits.  14th International Congress of Biochemistry, Prague, Czechoslovakia, July 10-15, 1988.  Abstracts, Vol. TU:  S13-4, (July 12, 1988), Videopress IOJ 162 00 Prague 6, 22.

37.     STUDIES ON INTEGRATION HOST FACTOR (IHF)

   37(1).    IHF blocks in vitro transcription in the A+T-rich b2 region of phage lambda.  That explains the old mystery as to why there is no in vivo transcription from the b2 region of the lambda prophage, whereas up to 50% of in vitro transcription originates in the b2 region:

Kur, J., Hasan, N., Szybalski, W., 1989.  Repression of transcription from the b2-att region of the coliphage l by the integration host factor.  Virology 168, 236-244.

Kur, J., Hasan, N., Szybalski, W., 1992.  Integration host factor (IHF) binds to many sites in the A+T-rich b2 region of phage l DNA.  Gene 111, 1-9.

  37(2).   IHF partially represses transcription from the lambda pR' promoter

Kur, J., Hasan, N., Szybalski, W., 1989.  Physical and biological consequences of interactions between the integration host factor (IHF) and the coliphage lambda pR' promoter and its mutants.  Gene 81, 1-15.

Kur, J., Hasan, N., Szybalski, W., 1990.  Alterations in the late pR' promoter of coliphage l modify both its activity and interaction with the integration host factor (IHF).  Mol. Gen. Genet. 221, 411-420.

  37(3).   IHF converts common restriction enzymes into rare cutters

Kur, J., Koob, M., Burkiewicz, A., Szybalski, W., 1992.  A novel method for converting common restriction enzymes into rare cutters:  integration host factor-mediated Achilles' cleavage (IHF-AC).  Gene 110, 1-7.

38.     NOVEL METHODS BASED ON THE UNIQUE PROPERTIES OF CLASS-IIS RESTRICTION ENZYMES

  38(1). The cleavage specificity of the FokI enzyme was increased from 5 bp to 7 bp by methylation

Pósfai, G., Szybalski, W., 1988.  Increasing the FokI cleavage specificity from 5 to 7 base pairs by two-step methylation.  Nucleic Acids Res. 16, 6245.

  38(2).   A new method was developed to locate methylated C or A

Pósfai, G., Szybalski, W., 1988.  A simple method for locating methylated bases in DNA as applied to detect asymmetric methylation by M·FokIA.  Gene 69, 147-151.

Pósfai, G., Szybalski, W., 1988.  A simple method for locating methylated bases in DNA using class-IIs restriction enzymes.  Gene 74, 179-191.  [Proceedings of the New England Biolabs Workshop on Biological DNA Modification, Gloucester, MA  (U.S.A.), May 20-23, 1988.]

   38(3).   A new simple method of tandem amplification of any gene or sequence was developed

Kim, S. C., Szybalski, W., 1988.  Amplification of cloned DNA as tandem multimers using BspMI-generated asymmetric cohesive ends.  Gene 71, 1-8.

  38(4).   A new method for the precise and stepwise trimming of a gene was developed

Hasan, N., Kim, S.C., Podhajska, A.J., Szybalski, W., 1986.  A novel multistep method for generating precise unidirectional deletions using BspMI, a class-IIS restriction enzyme.  Gene 50, 55-62.

  38(5).   A vector for simple gene fusions was constructed

Kim, S.C., Pósfai, G., Szybalski, W., 1991.  A novel gene-fusing vector:  construction of a 5'-GGmCC-specific chimeric methyltransferase M·BspRI/M·BsuRI.  Gene 100, 45-50.

39.     USE OF DOMINANT-NEGATIVE MUTANTS OF VIRAL GENES TO PROTECT PLANTS AND OTHER ORGANISMS FROM VIRAL INFECTION

In 1979, Dr. Szybalski devised a novel method for creating immunity to viral infection by cloning and expressing viral genes in bacteria or in plants.  These viral genes carry mutations which are dominant negative toward the infecting virus:

Szybalski, W., 1991.  Protection of plants against viral diseases by cloned viral genes and anti-genes.  Gene 107, 177-179.

Szybalski, W., 1994.  Resistance genes:  protection from virus infection using dominant-negative mutations in viral genes.  Book of Abstracts, Vol. 1, Abstract No. 436.  Eighth IUPAC International Congress of Pesticide Chemistry, July 4-9, 1994, Sheraton Washington Hotel, Washington, D.C., p. 492.

A patent for this invention was issued:

Szybalski, W.T., 1988–Patent.  Partially defective foreign gene for conferring immunity on a biological host.  U.S. Patent No. 4, 774, 182, Sept. 27, 1988.

40.     MAPPING  AND RAPID SEQUENCING OF LARGE GENOMES

Three novel approaches toward this goal, including the sequencing of large eukaryotic genomes, are currently being pursued in Dr. Szybalski's laboratory.  These are (1) physical genome mapping using the RecA-AC method, (2) preparation of a large amount of 10- to 100-kb genomic fragments, excised directly from the genome without conventional cloning, and (3) SPEL-6 sequencing by primer walking of the 10- to 100-kb genomic fragments, while preparing primers by ligation of hexamers annealed to the single-stranded template.

     40(1).     PHYSICAL MAPPING OF THE GENOME

This was already described in the section 34(2) on ACHILLES' HEEL CLEAVAGE (AC), specifically RecA-AC.  All physical distances between STSes up to 10 Mb could be measured and aligned as to generate a precise physical map.  This permits one to determine how much DNA is to be sequenced between all the STSes.  For the human genome (3000 Mb), there should be at least 600 STSes at average distances of 5 MB

Koob, M., Szybalski, W., 1990.  Cleaving yeast and Escherichia coli  genomes at a single site.  Science 250, 271-273.

Koob, M., Burkiewicz, A., Kur, J., Szybalski, W., 1992.  RecA-AC single-site cleavage of plas­mids and chromosomes at any predetermined restriction site.  Nucleic Acids Res. 20, 5831-5836.

Koob, M., Szybalski, W., 1992.  Preparing and using agarose microbeads.  Methods Enzymol. 216 part G, 13-20.

Szybalski, W., 1993.  From the double-helix to novel approaches to the sequencing of large genomes.  Gene 135, 279-290. [translated  into  Polish  and  reprinted in: Postepy  Mikrobiologii  vol. 33 (1994) pp. 393-417, and p. 423].

Koob, M., Szybalski, W., 1994.  Achilles' cleavage:  conferring the specificities of DNA-binding molecules on restriction endonucleases.  In:  Eckstein, F., Lilley, D.M.J. (Eds.), Nucleic Acids and Molecular Biology,  Vol. 8, 283-296.

Szybalski, W., 1997.  RecA-mediated Achilles' heel cleavage.  Curr. Opin. Biotechnol. 8, 75-81.

     40(2).     LARGE AMOUNTS OF 10- TO 100-kb GENOMIC FRAGMENTS

Because of artifacts connected with the cloning of large fragments, Dr. Szybalski's laboratory has developed a novel technique which allows in vivo excision and amplification directly from the genome.  This is accomplished by placing pairs of parallel FRT sites, together with the oriV sites, at 10-100-kb distances on the genome.  When the Flp and TrfA proteins were added in trans, the 10- to 100-kb genomic fragments between the pair of FRT sites were excised and amplified up to 500-fold:

Szybalski, W., 1993.  From the double-helix to novel approaches to the sequencing of large genomes.  Gene 135, 279-290.  [translated  into  Polish  by K. Taylor and  reprinted in: Postepy  Mikrobiologii  Vol. 33 (1994) pp. 393-417, and p. 423.

Pósfai, G., Koob, M., Hradecná, Z., Hasan, N., Filutowicz, M., Szybalski, W., 1994.  In vivo excision and amplification of large fragments of the Escherichia coli genome.  Nucl. Acids Res. 22, 2392-2398.

Szybalski, W., 1994.  In vitro and in vivo excision, amplification and rapid SPEL-6 sequencing of genomic  fragments.  In:  Dujon,  B. (Ed.)  Workshop on Tools for Genome Mapping, Institut Pasteur, Paris, France, 16 to 18 January 1994, European Commission, EUR 15751 EN, Office for Official Publications of the European Communities, L-2985, Luxemburg, pp. 8-9.

Wild, J., Hradecná, Z., Pósfai, G., Szybalski, W., 1996.  A broad-host-range in vivo pop-out and amplification system for generating large quantities of 50- to 100-kb genomic fragments for direct DNA sequencing.  Gene 179, 181-188.

Szybalski, W., Pósfai, G., Sektas, M., Wild, J., 1997.  In vivo excision of large fragments from bacterial genomes and their amplification:  bypassing conventional cloning and subcloning.  Genomic Science Series:  Small Genomes:  Sequencing, Functional Characterization and Comparative Genomics.  Hyatt Regency, Hilton Head, SC, January 25-28, 1997.  Microbial & Comp. Genomics 1, 385, 1996.

Wild, J., Sektas, M., Hradecná, Z., Szybalski, W., 1997.  Towards construction of a prototype library of strains for in vivo excision and amplification of genomic fragments.  Genomic Science Series:  Small Genomes:  Sequencing, Functional Characterization and Comparative Genomics.  Hyatt Regency, Hilton Head, SC, January 25-28, 1997.  Microbial & Comp. Genomics 1, 387, 1996.

Hradecná, Z., Wild, J., Szybalski, W., 1998.  Conditionally amplifiable inserts in pBAC vectors.  Microbial & Comp. Genomics 3, 58.

Yoon, Y.G., Pósfai, G., Szybalski, W., Kim, S.C., 1998.  Cre/loxP-mediated in vivo excision of large segments from yeast genome and their amplification based on the 2 mm plasmid-derived system.  Gene 223, 67-76.

Wild, J., Sektas, M., Hradecna, Z., Szybalski, W., 1998.  Targeting and retrofitting pre-existing libraries of transposon insertions with FRT and oriV elements for in vivo generation of large quantities of any genomic fragment.  Gene 223, 55-66.

     40(3).     SEQUENCING BY SPEL-6 PRIMER WALKING

In principle, primer walking is superior to random subcloning and sequencing, because it could easily be automated and it produces the sequence directly, for the 10- to 100-kb genomic fragment, avoiding laborious subcloning and 7- to 10-fold oversequencing.  The 5-min assembly of the 18-60 nt primers from a library of hexamers makes the SPEL-6 method very practical and 10- to 100-fold more rapid than present methods, when the full automation becomes available:

Szybalski, W., 1990.  Proposal  for sequencing DNA using ligation of hexamers to generate sequential elongation primers (SPEL-6).  Gene 90, 177-178.

Szybalski, W., 1992.  Automated sequencing of large genomes without conventional cloning.  [13th International Conference on Biochemical Analysis, Munich (FRG), May 5-8, 1992.  Symposium 1:  Analysis of the human genome:  implications for the diagnosis and management of genetic disease.]  Fresenius J. Anal. Chem. 343 (No. 1), p. 4.

Szybalski, W., 1993.  From the double-helix to novel approaches to the sequencing of large genomes.  Gene 135, 279-290.  [translated  into  Polish  and  reprinted in: Postepy  Mikrobiologii  vol. 33 (1994) pp. 393-417, and p. 423.

Kaczorowski, T., Szybalski, W., 1994.  Assembly of 18-nucleotide primers by ligation of three hexamers:   sequencing of large genomes by primer walking.  Analyt. Biochemistry 221, 127-135.

Kaczorowski, T., Szybalski, W., 1996.  Cooperativity of hexamer ligation.  Gene 179, 189-193.

Kaczorowski, T., Szybalski, W., 1996.  Automated four-color DNA sequencing using primers assembled by hexamer ligation.  Gene 179, 195-198.

Kaczorowski, T., Szybalski, W., 1998.  DNA sequencing by SPEL-6 hexamer ligation and primer walking. Gene 223, 83-91.

Kaczorowski, T.,  Sektas, M., Szybalski, W., 1999.  Rapid preparation of denatured  double-stranded DNA templates  for  sequencing.  Molecular Biotechnology 11, 199-200. 

Kaczorowski, T., Szybalski, W., 2000.  A new approach to DNA sequencing based on the assembly of primers by hexamer ligation  (Nowe podejscie do sekwencjonowania DNA oparte na wykorzystywaniu starterow zestawianych przez ligacje szescionukleotydowych oligomerow.—in Polish)  Biotechnologia 3, 151-163.

     40(4).     BAC  VECTORS AND  OTHER AUXILIARY  METHODS

(A) AUXILIARY METHODS

Hasan, N., Koob, M., Szybalski, W., 1994.  Escherichia coli genome targeting, I. Cre-lox-mediated in vitro generation of ori- plasmids and their in vivo chromosomal integration and retrieval.  Gene 150, 51-56.

Sektas, M., Gregorowicz, Szybalski, W., 1999. Transient conversion to RecA+ phenotype to transduction in any Escherichia coli recA- strains. BioTechniques 27, 911-914.

Palmeros, B., Wild, J., Szybalski, W., Le Borgne, S., Hernández-Chávez, G. Gosset, G., Valle, F., Bolivar, F., 2000. A family of removable cassettes designed to obtain antibiotic-resistance-free genomic modifications of Escherichia coli and other bacteria. Gene 247, 255-264.

(B) AMPLIFIABLE BAC GENOMIC VECTORS

Hradecná, Z., Wild, J., Szybalski, W., 1998.  Conditionally amplifiable inserts in pBAC vectors.  Microbial & Comp. Genomics 3, 58.

Szybalski,W., 1999.  Conditionally amplifiable BAC vector.   US Patent No. 5,874,259.

Szybalski, W., Wild, J., Hradecna, Z., 2000.  Conditionally amplifiable BAC vector.   US Patent No. 5,874,259 (revised).

Wild, J., Hradecna, Z., Szybalski, W., 2002. Conditionally amplifiable BACs: switching from single-copy to high-copy vectors and genomic clones. Genome Research 12, 1434-1444.

Szybalski, W., Wild, J. and Hradecna, Z., 2003. Method for converting single-copy BAC vectors to conditional high-copy PBAC/ORIHC vectors. US Patent and Trademark Office. U.S. Patent Application Publication, Pub. No.: US-2003/0049665 A1, Pub. Date: March 13, 2003, pp. 1–12, title page, Figs, 1–2.

Wild, J. and Szybalski, W., 2004. Copy-control pBAC/oriV vectors for genomic cloning. In, Recombinant Gene Expression. Reviews and Protocols, P. Balbás and A. Lorence, Eds.; Methods in Molecular Biology, J.M. Walker. Series Ed., 2nd edition, Vol. 267, Chapter 10, Humana Press, Totowa, NJ, pp. 145–154.

Wild, J., Hradecna, Z. and Szybalski, W., 2005-abstract. Selection for recombinant clones based on the PvuII R-M system. The 2005 Molecular Genetics of Bacteria & Phages Meeting. August 2–7, University of Wisconsin, Madison WI , p. 161.

Wild, J., Hradecna, Z., Gromek, K., Frisch , D., Blattner, F.R. and Szybalski, W., 2005 - abstract. Amplifiable BAC8 vector-host system with two cloning modes for preparing genomic libraries. The 2005 Molecular Genetics of Bacteria & Phages Meeting. August 2–7, University of Wisconsin, Madison WI , p. 162.

Wild, J. and Szybalski, W., 2005. Lucigen electrocompetent cells are efficiently transformed with BAC clones carrying large DNA inserts. Elucidations, Vol. 5, 2005, pp. 1- 2. http://www.lucigen.com/catalog/images/pdfs/newsletters/Electrocomp_efficiently_transformed.pdf

(C) VERY TIGHT EXPRESSION VECTORS (AMPLIFIABLE BAC AND OTHERS)

Sektas, M., and Szybalski, W., 1998.  Tightly controlled two-stage expression vectors employing the  Flp/FRT-mediated inversion of cloned genes.  Molecular Biotechnology 9, 17-24.

Sektas, M., Hasan, N., Szybalski, W., 2001.  Expression plasmid with very tight two-step control;  Int/att-mediated gene inversion with respect to the stationary promoter.  Gene 267, 213-220.

Wild, J., Hradecna, Z., Szybalski, W., 2001. Single-copy/high-copy(SC/HC) pBAC/oriV novel vectors for genomics and gene expression.  Plasmid 45, 142-143.

Szybalski,W., Wild, J. and Hradecna, Z., 2002 - patent. Expression vector with dual control of replication and transcription. US Patent No. 6,472,177.

Wild, J., Hradecna, Z. and Szybalski, W., 2002. Conditionally amplifiable BACs: switching from single-copy to high-copy vectors and genomic clones. Genome Research 12, 1434-1444.

Sektas, M. and Szybalski, W., 2002. Novel single-copy pETcocoTM vector with dual controls for amplification and expression. InNOVAtions No. 14, July 2002, 6–8.

Wild, J., Hradecna, Z. and Szybalski, W., 2002 - abstract. The copy-control expression vectors (pBAC/oriV/trfA) with the tightly controlled ara  and rha  promoters. Plasmid Biology 2002, An International Symposium, Pittsburgh, PA USA. June 22 to June 28 2002. pp. 182–183.

Hradecna, Z., Wild, J. and Szybalski, W., 2002 – abstract. A family of dual copy-control expression vectors, pBAC/oriV/trfA, ensuring very low background. Abstracts of Papers Presented at the 2002 Meeting on Molecular Genetics of Bacteria & Phages, Cold Spring Harbor NY August 20-25, 2002, p. 41.

Wild, J. and Szybalski, W., 2004. Copy-control tightly regulated expression vectors based on pBAC/oriV. In, Recombinant Gene Expression. Reviews and Protocols, P. Balbás and A. Lorence, Eds.; Methods in Molecular Biology, J.M. Walker. Series Ed., 2nd edition. Vol. 267, Chapter 11 Humana Press, Totowa, NJ, pp. 155–167.

(D) SEQUENCING OF REPETITIVE DNA USING BAC VECTORS
Mendez Lago, M.. Wild, J., Abad, J.P., Martin-Gallardo, A., Villasante, A. and Szybalski, W., 2004. Transposon-based innovative method for sequencing highly repetitive heterochromatic DNA in BAC/oriV clones. 45th Annual Drosophila Research Conference, Sponsored by The Genetic Society of America Washington, DC, March 24-28, 2004, Abstract 981C, p. 30. http://www.drosophila-conf.org/

Szybalski, W., 2004. Genomic maps and novel approaches to sequencing of repetitive versus non-repetitive DNA. Polish J. Chem., vol. 78(8), 1007-1017. http://ichf.edu.pl/pjch/pj-2004/pj-2004-08a.pdf

Mendez Lago, M.. Wild, J., Villasante, A. and Szybalski, W., 2004. Use of pBAC/oriV clones and transposons for sequencing highly repetitive DNA. Abstracts of Papers Presented at the 2004 Meeting on Molecular Genetics of Bacteria & Phages, Cold Spring Harbor, NY, August 24-29, 2004, p. 51.

Mendez Lago, M., Wild, J., Abad, J.P., Martin-Gallardo, A., Villasante, A. and Szybalski, W., 2004. Transposon-based innovative method for sequencing highly repetitive heterochromatic DNA in BAC/oriV clones, in: Abstracts, 30th Steenbock Symposium: Gene Expression, Transposition, Genomics and other Life Sciences. May 20–23, 2004. University of Wisconsin, Madison WI. p. 32.

Mendez Lago, M., Wild, J., Villasante, A. and Szybalski, W., 2004. BAC/oriV clones and transposons for sequencing highly repetitive DNA. First Annual Genomic Sciences Training Program Retreat. June 21, 2004. The Pyle Center, University of Wisconsin Madison, WI, USA, p. 23.

Szybalski, W., Mendez Lago, M., Wild, J., and Villasante, A., 2005. Novel approaches to sequencing repetitive versus non-repetitive genomes. The 5th Parnas Ukrainian-Polish Conference:  MOLECULAR MECHANISMS OF CELLULAR SIGNALING, Kyiv, Ukraine, April 26-29, 2005; The Ukrainian Biochemical Journal. 77 (No. 2 – special issue) p. 40.

Szybalski, W., Wild,  J., Villasante, A., and Mendez Lago, M., 2005. Transposon-based innovative method for sequencing highly repetitive DNA in BAC/oriV clones. Patent WARF P04312US.

     40(5). ADDITIONAL MORE RECENT PUBLICATIONS: 2000-2013

2000

Palmeros, B., Wild, J., Szybalski, W., Le Borgne, S., Hernández-Chávez, G., Gosset, G., Valle, F., and Bolivar, F., 2000. A family of removable cassettes designed to obtain antibiotic-resistance-free genomic modifications of Escherichia coli and other bacteria. Gene 247, 255-264.

Kaczorowski, T., and Szybalski, W., 2000. A new approach to DNA sequencing based on the assembly of primers by hexamer ligation (Nowe podejscie do sekwencjonowania DNA oparte na wykorzystywaniu starterow zestawianych przez ligacje szescionukleotydowych oligomerow.—in Polish) Biotechnologia 3/50, 151–163.

Szybalski,W., 2000. Genetic revolution at the turn of the XX and XXI centuries. (Rewolucja genetyczna na przelomie XX  i  XXI wieku. –in Polish). Kosmos 49, No. 3, 385–393. http://kosmos.icm.edu.pl/PDF/2000-1.pdf

Szybalski, W., 2000. Charitable bomb G (Dobroczynna bomba G. – in Polish) Rzeczpospolita (Millennium 2000, p. 1) 06.07.00 (July 6, 2000) Nr 156 Naklad 830; http://www.rzeczpospolita.pl/ asc/dodatki/mil_000706/mil_a_1.html

Wild, J., Hradecna, Z. and Szybalski, W., 2000. The pBeloBAC/oriV vectors which permit cloning and stable maintenance of single copies and ‘on command’ amplification of large genomic fragments. Abstracts of Papers Presented at the 2000 Meeting on Genome Sequencing & Biology. Cold Spring Harbor, N.Y., May 10-14, 2000, p. 279.

Szybalski,W., 2000.  In memoriam: Alfred D. Hershey (1908-1997).  In:  Stahl,  F. W. (Ed), We Can Sleep Later. Alfred D. Hershey and the Origins of Molecular Biology. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 19-22.

Wild, J., Hradecna, Z., and Szybalski, W., 2000.  Novel single-copy/high-copy(SC/HC) pBAC/oriV expression vectors. Abstracts of Papers Presented at the 2000 Meeting on Molecular Genetics of Bacteria & Phages, Cold Spring Harbor NY, August 22-27, 2000, p. 100.

Wild, J., Hradecna, Z., and Szybalski, W., 2000. Single-copy/high-copy(SC/HC) pBAC/oriV novel vectors for genomics and gene expression.  In:  Plasmid Biology 2000. International Symposium on Molecular Biology of Bacterial Plasmids, Prague, Czech Republic, September 19-25, 2000, pp. 36-37.

Wild, J., Hradecna, Z. and Szybalski, W., 2000. Novel single-copy/high-copy(SC/HC) pBAC/oriV vectors for genomics and gene expression.  In:  Current Topics in Gene Expression Systems. San Diego, CA, September 24–27, 2000, pp. 55–56. (Sponsored by Invitrogen Corp., Research Corporation Technologies and Research Genetics).

Szybalski,W., Wild, J., and Hradecna, Z., 2000. Conditionally amplifiable BAC vector. US Patent No. 5,874,259 [revised].

Profesor Waclaw Szybalski doktorem honoris causa. Gazeta Gdansk AMG 2000. http://www.amg.gda.pl/uczelnia/gazeta/archiwum/gaz_01_2001-01.html#10

Doctor Honoris Causa Waclaw Szybalski. Nadanie Waclawowi Szybalskiemu tytulu doktora honoris causa Akademii Medycznej w Gdansku. Limon, J. and Bigda, J. , Eds. Slowo/Obraz Terytoria Publ., Gdansk, 23 XI. 2000, pp. 1–65.

2001

Szybalski, W., 2001. My road to Øjvind Winge, the father of yeast genetics. Genetics 158: 1–6. http://www.genetics.org/cgi/content/full/158/1/1

Sektas, M., Hasan, N., and Szybalski, W., 2001.  Expression plasmid with very tight  two-step control;  Int/att-mediated gene inversion with respect to the stationary promoter. Gene 267, 213-220.

Wild, J., Hradecna, Z., and Szybalski, W., 2001. Single-copy/high-copy(SC/HC) pBAC/oriV novel vectors for genomics and gene expression. Plasmid 45(a), 142-143.

Wild, J., Hradecna, Z., and Szybalski, W., 2001 abstract. Advantages of using single-copy/high-copy (SC/HC) pBAC/oriV vectors for genomic cloning and expression. Abstracts of Papers Presented at the 2001 Meeting on Genome Sequencing & Biology, Cold Spring Harbor, NY, May 9-13, 2001, p.271.

Wild, J., Hradecná, Z., and Szybalski, W., 2001 abstract. Easy conversion of single-copy BAC libraries into conditionally high-copy pBAC/oriV clones. The 2001 Molecular Genetics of Bacteria & Phages Meeting, Madison WI, July 31–August 5, 2001, p. 163.

Wild, J., Hradecna, Z., and Szybalski, W., 2001 abstract. Conversion of conventional single-copy BAC into conditionally high-copy pBAC/oriV clones. Abstracts of Papers Presented at the 2001 Raper Symposium.  Abstract 63.

Sokolowska, T., 2001. Lwowiak doktorem honoris causa Politechniki Gdanskiej, Politechnika Gdanska-Pismo PG - listopad 2001. http://www.lwow.home.pl/hc.html

Kolodziejczyk, A. (Rektor,  Politechnika Gdanska), 2001. “I have survived Stalin and Hitler, and being 80 years old I have also lost a chance to dying young (Waclaw Szybalski)”. A festive address by His Magnificence Rector of the Gdansk Technical University during  the ceremonies of granting the Doctor honoris causa title and privileges to Professor Waclaw Szybalski.  [Przezylem Stalina i Hitlera, a majac ponad 80 lat stracilem tez szanse, aby zginac mlodo (Waclaw Szybalski)   Wystapienie JM Rektora PG podczas uroczystosci nadania tytulu i godnosci doktora  honoris causa prof. Waclawowi Szybalskiemu]. Pismo PG vol. IX, (No. 8) Nov 2001, p. 12.

Borowski, E., 2001. Laudacja prof. Edwarda Borowskiego, promotora doktoratu  honoris causa prof. Waclawa  Szybalskiego. Pismo PG   vol. IX, (No. 8) Nov 2001, p. 13-14.

Sokolowska, T. (spisala z nagrania magnetofonowego; autoryzowal dnia 23. X. 2001 prof. Waclaw  Szybalski), 2001. Wystapienie doktora h.c. profesora  Waclawa  Szybalskiego z  Uniwersytetu Wisconsin w Madison, USA. Pismo PG, vol. IX, (No. 8) Nov 2001, p. 14–16.

2002

Wild, J., Hradecna, Z. and Szybalski, W., 2002. Superior single-copy/high-copy (SC/HC) pBAC/oriV vectors for genomics and gene expression Konferencja Naukowa, "Biotechnologia w Polsce”. X Inauguracja Roku Akademickiego, Miedzyuczelniany Wydzial Biotechnologii, Gdansk, 25-28 September 2002.

Sektas, M., Dobiech, A., and Szybalski, W., 2002. Nowy wektor ekspresyjny o niezaleznie kontrolowanych funkcjach ekspesji genu i amplifikacji DNA.  Abstracts, 28th Meeting of Polish Biochemiocal Society  (XXXVIII Zjazd Polskiego Towarzystwa Biochemicznego), Wroclaw, Poland, 18-22 September, 2002. p. 111.

Sakazume, N., Hirozane-Kishikawa, T., Nakamura, M., Shibata, Y., Shiraki, T., Arakawa, T., Ishii Y., Sasaki D., Kawai J., Wild J., Szybalski W., Carninci P., and Hayashizaki Y. A method for size selection and cloning of (very) long rare transcripts. Poster 2P-0065, the 25th meeting of the Molecular Biology Society of Japan, December 11-14, 2002 Yokohama, Japan.

Fedorczyk, A., 2002. Podhajska Anna.Gazeta Wyborcza. 04-02-2002 13:35. http://serwisy.gazeta.pl/nauka/1,34157,682348.html

2003

Richard J. Roberts, Marlene Belfort, Timothy Bestor, Ashok S. Bhagwat, Thomas A. Bickle, Jurate Bitinaite, Robert M. Blumenthal, Sergey Kh. Degtyarev, David T. F. Dryden, Kevin Dybvig, Keith Firman, Elizaveta S. Gromova, Richard I. Gumport, Stephen E. Halford, Stanley Hattman, Joseph Heitman, David P. Hornby, Arvydas Janulaitis, Albert Jeltsch, Jytte Josephsen, Antal Kiss, Todd R. Klaenhammer, Ichizo Kobayashi, Huimin Kong, Detlev H. Krüger, Sanford Lacks, Martin G. Marinus, Michiko Miyahara, Richard D. Morgan, Noreen E. Murray, Valakunja Nagaraja, Andrzej Piekarowicz, Alfred Pingoud, Elisabeth Raleigh, Desirazu N. Rao, Norbert Reich, Vladimir E. Repin, Eric U. Selker, Pang-Chui Shaw, Daniel C. Stein, Barry L. Stoddard, Waclaw Szybalski, Thomas A. Trautner, James L. Van Etten, Jorge M. B. Vitor, Geoffrey G. Wilson and Shuang-yong Xu, 2003.  A nomenclature for restriction enzymes, DNA methyltransferases, homing endonucleases and their genes. Nucleic Acids Research, 31 (2003) 1805-1812 http://nar.oupjournals.org/cgi/content/full/31/7/1805

Szybalski, W., 2003. Recollections of 1939-1949: From Politechnika Lwowska to Politechnika Gdanska.  Acta Biochem.  Polonica 50 (No.2) 2003.  pp. XVII-XXI. http://www.lwow.home.pl/szybalski.htm

Szybalski, W., 2003. The genius of Rudolf Stefan Weigl (1883-1957), a Lvovian microbe hunter and breeder – In Memoriam.  In: International Weigl Conference (Microorganisms in Pathogenesis and their Drug Resistance – Programme and Abstracts; Rostyslaw Stoika et al,  Eds.)  Sept 11–14, 2003.  Lviv,  Ukraine (former  Lwow, Poland).  pp. 10–31 [15 Figs., in: http://www.lwow.home.pl/Weigl/in-memoriam.html(in English) http://www.lwow.home.pl/tyfus.html http://www.lwow.home.pl/weigl.html] ISBN 966-655-099-1; SPOLOM Publishers, Lviv, Ukraine, e-mail:spolom@sc.net.ua http://www.lwow.home.pl/Weigl/in-memoriam.html http://wwwzenger.informatik.tu-muenchen.de/~huckle/mathwar.html -- Banach -- Weigl_Lwow_2003_4.pdf page 13

Wild, J., Hradecna, Z. and Szybalski, W., 2003. Selection for recombinant clones based on the PvuII R-M  system.
The 2003 Molecular Genetics of Bacteria & Phages Meeting. Madison WI (lost: see Wild, J., Hradecna, Z. and Szybalski, W., 2005 - abstract. Selection for recombinant clones based on the PvuII R-M system. The 2005 Molecular Genetics of Bacteria & Phages Meeting. August 2–7, University of Wisconsin, Madison WI , p. 161.)

Dawson, M., 2003. Martha Chase dies. With Alfred D. Hershey, she established DNA as the genetic material.  The Scientist    August 20, 2003 http://www.biomedcentral.com/news/20030820/03/

Barankiewicz, J., 2003. Profesor Waclaw Szybalski laureat tegorocznej Nagrody im. Kazimierza Funka.   Przeglad Polski. Nowy  Dziennik, New York, NY, (12 grudnia 2003) Tygodniowy Dodatek Literacko Spoleczny.
http://www.dziennik.com/www/dziennik/kult/archiwum/07-12-03/pp-12-12-04.html

Anonymous:  Waclaw Szybalski - The Casimir Funk Natural Science Award 2003. http://www.lwow.home.pl/award.html Annual Awards Ceremonyhttp://www.piasa.org/awards.html

2004

Szybalski, W., 2004. Reward Poland’s loyalty. Guest Editorial. Wisconsin State Journal, Jan. 28, 2004.  p. A10

Szybalski et al., General method for cloning of variously fragmented DNA molecules. PO3219US Accepted by WARF Jan. 28, 2003 as a provisional Application (letter of  M.E. John of WARF of January 23, 2004).

Wild, J.,  Hradecna, Z., and Szybalski, W., 2004.  Amplifiable BAC technology: Principle and applications. In:  Abstracts on the Workshop on:  Comparative  Genomics for Health and Environment. Warsaw, 26-29 Nov. 2004.  Institute of Biochemistry and Biophysics. Addendum. p. 4.

Barankiewicz, J., 2004.   Professor Waclaw Szybalski – pionier nowoczesnej biotechnologii  i  prekursor naukowy szeregu noblistów. Serwis Biotechnologiczny - 20 lutego 2004 ::: 20:19 (in Polish) http://www.biotechnologia.com.pl/?sectionID=9&show=65  (see also Biotechnology.doc  in  “Typist Stuff”)

Anonymous: Waclaw Szybalski (2004 - Encyclopedia entry). In  Wikipedia – Wolna Encyklopedia. http://pl.wikipedia.org/wiki/Wac%C5%82aw_Szybalski

Wisconsin Alumni Research Foundation: Conditionally Amplifiable Vectors  P98090US http://www.warf.org/servlet/fulldes.Servlet1?case_code=P98090US

Epicentre Copy-Control® Cloning Systems http://www.epibio.com/guide_to_genomic_library_production.asp

Anonymous: Success Stories. A Conversation with EPICENTRE about Licensing University Technology: How did you learn about Professor Szybalski's technology? http://www.warfwisconsin.org/whatsinit/index.jsp?catid=-3&subcatid=21

Anonymous (W. Szybalski): Advanced Vectors for Cloning BACs, Fosmids, &  Large Insert Plasmids Lucigen’s eLucidations vol. 3 (2004) pp. 1–4 Advanced_Vectors_fo#14F9521.doc

2005

Waclaw Szybalski: Wikipedia, Free Encyclopedia entry, http://pl.wikipedia.org/wiki/Wac%C5%82aw_Szybalski

Szybalski, W., 2005 - web. The rededication of Polish "Campo Santo" in Lwów (Lviv) by presidents of Ukraine and Poland.
http://WWW.LWOW.HOME.PL/campo-santo.html

Szybalski, W., 2005. Photo and the Introduction to the “Coming of Phage”,  Celebrating the Fiftieth Anniversary of the First Phage Course, 1995, reprinted in The ABGs of Phage, Celebrating the Sixtieth Anniversary of the Cold Spring Harbor “Phage Course”, June 24–26, 2005. Produced by D. Stewart  © Cold Spring Harbor Laboratory, p. 1 (inside front cover page).

Szybalski, W., 2005. Genetics and Chemistry: Sequencing Non-Repetitive versus Repetitive DNA. Abstracts of Papers Presented at the Kunicki-Goldfinger Conference, Warszawa Oct.  22, 2005.

Wild, J., Hradecna, Z., and Szybalski, W., 2005. Selection for recombinant clones based on the PvuII R-M system. Abstracts of Papers Presented at the Kunicki-Goldfinger Conference, Warszawa Oct. 22, 2005.

Wild, J., Frisch, D., Hradecna, Z., Gromek, K., Szybalski, W. and Blattner, F.R., 2005. Amplifiable BAC8 vector-host system with two cloning modes for preparing genomic libraries. Abstracts of Papers Presented at the Kunicki-Goldfinger Conference, Warszawa Oct. 22, 2005.

Wild, J., Hradecna, Z., and Szybalski, W., 2005.  Selection for recombinant clones based on the PvuII R-M system.
19TH Annual Kenneth B. Raper  Symposium on Microbial Research at UW-Madison,  Aug. 29, 2005, p. 21.

Wild, J., Frisch , D., Hradecna, Z., Gromek, K., Szybalski, W., and Blattner, F.R., 2005. Amplifiable BAC8 vector-host system with two cloning modes for preparing genomic libraries. 19TH Annual Kenneth B. Raper  Symposium on Microbial Research at UW-Madison, Aug. 29, 2005, p. 22.

Case No:P04461US. A GENERAL METHOD FOR CLONING OF VARIOUSLY FRAGMENTED DNA MOLECULES  in  pBAC/oriV vectors
(1)  W. Szybalski     (2)  J. Wild (3)  Z.  Hradecna
(4) D.  Frisch (5) F. R. Blattner   (6)   K. Gromek

Case No:P04460US  CLONE-A-MATIC - A GENERAL METHOD FOR TRANSPOSON-MEDIATED CLONING
(1)  Waclaw Szybalski     (2)  Jadwiga Wild (3)  Zdenka Hradecna
(4) David Frisch (5) Frederick R. Blattner   (6) Douglas Wieczorek

Igor Polianski (Ihor Polyansky) : Selectioneer (Collector) of Genes(Genomes): Ukraine Was Visited by the  ‘Creator’  (‘Parent’) of the Current Gene Therapy, Professor Waclaw Szybalski (Interview with W. Szybalski in Kiev).
Zerkalo Nedeli – Mirror  Weekly   Number 29 (566), July 30 - August 5, 2005) pp. …-… ??.
http://www.zerkalo-nedeli.com/ie/show/556/50733/
http://www.mirror-weekly.com/ie/index/
[I cannot find the English version]

Szybalski, W., 2005. Ernest Sym. Father of Biotechnology (Ernest Sym. Ojciec biotechnologii;  in Polish):   In:  Politechnika Gdanska: Pionierzy Politechniki Gdanskiej.  Gdansk  2005, str. 629 –634.

Pollock, M., 2005 - Library Plans.  Reading, writing, & renovations. Lab plans Carnegie library rebirth. [funded by W. Szybalski].  In:  Harbor Transcript, Cold Spring Harbor Laboratory, Winter ’05, Vol. 25 [No. 1] pp. 10 – 11.

2006

Anonymous (Palmeros, Wild, Szybalski et al  Gene 247 2006 255 -  ) pJW168 vector for in vivo genetics using Cre/lox.  In Lucigen, Clone Smarter 2006 Catalog  pp. 6–7 and 62.

Anonymous (Sektas, Gregorowicz, Szybalski,  BioTechniques, 27, 1999, 911 - ).  plnvRecA vector for generalized P1 transduction.  In Lucigen, Clone Smarter 2006 Catalog  pp. 7-8 and 62.

Anonymous (Wild, Hradecna, Szybalski, Genome Res., 12, 2002, 1434 - ). CopyRight cloning kits.  In Lucigen, Clone Smarter 2006 Catalog  pp. 33–35 and 60.

Szybalski, W. Zbigniew Lorkiewicz: Wspomnienia amerykanskie z lat 1959 1961 Lublin, 2006.

2007

Szybalski, W., 2007. Celebration of life of Rudolf  S.  Weigl (1883-1957), A Leopolitan conqueror of typhus:  50-th Aniversary of his passing. In:  Polish Academy of Sciences. Division II, Biological Sciences, The Committee on Microbiology, 2nd Polish-Ukrainian Weigl Conference. Microbiology in the XXI  Century.  Warsaw Agricultural University, SGGW, 24-26 Sept. 2007. pp. 11-33.

Szybalski, W., 2007. Waclaw Szybalski about Stefan Banach. (This interview with Professor Waclaw Szybalski was conducted by D. John J. Greczek). In: STEFAN BANACH. Remarkable life and brilliant mathematics. (Jakimowicz, E. and Miranowicz, A. Eds.) Published by Gdansk University Press and Adam Mickiewicz University Press, pp. 79-89.

Szybalski, W., 2007.  Waclaw Szybalski o Stefanie Banachu.  (Wywiad z prof. Waclawem Szybalskim przeprowadzony przez dr. Johna J.  Greczka).   In: STEFAN BANACH. Niezwykle zycie i genialna matematyka.   (Jakimowicz, E. and Miranowicz, A.  Eds.)  Published by Uniwersytet Gdanski and  Uniwersytet im .Adama Mickiewicza, Gdansk-Poznan,  pp. 88-96.

Wild, J., Hradecna, Z. and Szybalski, W., 2007. Vectors for amplification snd sequencing of DNA. Amplifiable BAC  technology; principle and applications. In: Polish Academy of Sciences. Division II, Biological Sciences, The Committee on Microbiology,  2nd Polish-Ukrainian Weigl Conference. Microbiology in the XXI  Century.  Warsaw Agricultural University, SGGW, 24-26 Sept. 2007.  pp. 118-119.

2008

Szybalski, W., 2008.  History of synthetic biology:  Witnessing molecular biology from its beginnings.  Proceedings of The Fourth International Meeting on Synthetic Biology (SB 4.0), Hong Kong University of Science and Technology, The BioBrick Foundation, Oct. 10-12, 2008,  pp. 48 - 50.

Borman, S., 2008.  Designed pathways and microbes.  Synthetic biology aims to generate biofuels, medicines, and novel organisms.  Chem Eng. News  86[46](2008) 62-66  [Nov. 17, 2008 / No. 46].

Kakirde, K.S., Wiggins, A.G., Wild, J., Szybalski, W. and Liles, M.R., 2008 - abstract.  Development of a novel Gram-negative shuttle BAC vector as a tool for molecular biology.  2008 ABSTRACTS Southeastern Branch (SEB) of  ASM  Joint Annual Meeting Southeastern Branch and Florida Branch ASM November 6-8, 2008, pp., 23-24, University of North Florida, University Center, 12000 Alumni Drive, Jacksonville, FL 32224

2009 - 2010

Mendez-Lago, M., Wild, J., Whitehead, S.L., Tracey, A., de Pablos, B, Rogers, Jane., Szybalski, W. and Villasante, A., 2009.  Novel sequencing strategy for repetitive DNA in a Drosophila BAC clone reveals that the centromeric region of the Y chromosome evolved from a telomere.  Nucleic Acids Research. 37, 2264-2273, 2009.

Szybalski, W., 2009.  Aleksander Zawadzki of Lwów University, Poland:  Gregor Mendel's mentor and inspirer.  Abstracts and Program - 63rd Annual Meeting of the Polish Institute of Arts and Sciences (PIASA), Hyatt Regency Jersey City on the Hudson, Jersey City, NJ, June 13-14, 2009, p. 3.

Szybalski, W., 2009.   Synthetic biology and gene therapy (In Weigl’s steps beyond his vaccine).  in:  Abstracts.  3rd Ukrainian-Polish Weigl Conference, Microbiology on service for human.  pp. 26-27, Odesa National Mechnykov University, 14-17 Sept. 2009, Odesa, Ukraine

Szybalski, W., 2010.  Alexander Zawadzki, a professor of Lwów University, Poland, Gregor Mendel's mentor and inspirer of genetics.  The Polish Review (The Polish Institute of Arts and Sciences of America, New York, NY).

2011 - 2013

Kakirde, K. S., Wild, J., Godiska, R., Mead, D. A., Wiggins, A. G., Goodman, R. M., Szybalski, W., and Liles, M. R., 2011.  Gram Negative Shuttle BAC Vector for Heterologous Expression of Metagenomic Libraries.  Gene 475, 57-62.

Lobocka, M., and Szybalski, W. T. Bacteriophages, Part A.  Preface, pp. xiii-xv.  In: K. Maramorosch, F. Murphy, and A. Shatkin, Series Editors, Advances in Virus Research, Vol. 82, pp. 2-396, 2012.

Lobocka, M., and Szybalski, W. T.  Bacteriophages, Part B.  Preface, pp. xvii-xviii. In: K. Maramorosch, F. Murphy, and A. Shatkin, Series Editors, Advances in Virus Research, Vol. 83, pp. 2-477, 2012.

Malecki, M., and Szybalski, W., 2012.  Isolation of Single, Intact Chromosomes from Single, Selected Ovarian Cancer Cells for in Situ Hybridization and Sequencing.  Gene 493, 132-139.

Szybalski, W., 2013.  The 50th Anniversary of Gene Therapy:  Beginnings and Present Realities.  Gene 525, 151-154.

Kosiedowski, S., 2012. Professor Waclaw Tadeusz Szybalski
         Konferencja: "50-lecie Terapii  Genowej: Wklad Profesora 
          Waclawa Szybalskiego do Nauki i Ludzkosci"
          Polska Akademia Umiejetnosci  (PAU),  32 Figs.
          Krakow,  28 - 29  September  2012

41.    IN DEFENSE OF FREEDOM OF RESEARCH ON DNA (also HISTORY/OBITUARIES/GENERAL)

Dr. Szybalski has served as a founding member of RAC (The NIH Recombinant DNA [reDNA] Advisory Committee) and in addition was very active in 'defending' the molecular genetics research from the ill-advised legislative actions, the purpose of which was to restrict or to prohibit the reDNA research in USA and othe countries. --  He testified at the various Committees of the US Congress, at several Foreign Parliaments, including German  Bundestag in Bonn, Germany, and briefed the Pope, John-Paul II, at a private audience in Castel Gandolfo on  September 19, 1981.   He published many articles in lay press and in scientific Journals, a few of which are listed below:

Szybalski, W., 1978.  Dangers of legislative and regulatory approaches concerning the hypothetical risks of the recombinant DNA technique.  In:  H. W. Boyer and S. Nicosia (Eds.), Genetic Engineering, pp. 253-275.  Amsterdam: Elsevier/North Holland Biomedical Press.

Szybalski, W., 1978.  Much ado about recombinant DNA regulations.  In:  H. H.  Fudenberg and V. L. Melnick (Eds.), Biomedical Scientists and Public Policy, Chap. 7, pp. 97-142.  New York:  Plenum Press.

Szybalski, W., 1978.  Dangers of regulating the recombinant DNA technique.  Trends Biochem. Sci. 3, N243-N247.

Szybalski, W., 1979.  Summary and critique of the new NIH Guidelines for recombinant DNA research.  Gene 5, 179-196.

Szybalski, W., 1980.  Recommendations against regulations and legislation. In:  E. Herwig and S. Hübner (Eds.), Chancen und Gefahren der Genforschung. Protokolle und Materialien zur Anhörung des Bundesministers für Forschung und Technologie in Bonn, 19. bis 21. September 1979, pp. 297-300 and 361-370.  R. Oldenbourg Verlag, Munich, Germany.

Szybalski, W., 1980.  Asilomar and five years.  Trends Biochem. Sci. 5, VI-IX.

Szybalski, W., 1980.  Trying to please both devils and angels.  Trends Biochem. Sci. 5, XVIII-XIX.

Szybalski, W., 1982.  Benefits and pitfalls of patent policies in academic research employing genetic engineering techniques.  In:  W. J. Whelan and S. Black (Eds.), From Genetic Engineering to Biotechnology - The Critical Transition, pp. 223-231.  New York:  John Wiley & Sons, Ltd.

Szybalski, W., 1985.  (Editorial) Early warning principle offsets the need for regulation of the recombinant DNA technique.  BioEssays 2, 147-148.

Szybalski, W., 1995. In memoriam. Alexander (Leszek or Leshek) Kohn (1919-1994). A personal tribute. Gene 160, 3-5.

Szybalski, W., 1997. In Memoriam. Julius Marmur (1926-1996). Gene 204, 1-3.

Szybalski, W., 1998. In Memoriam. Karol Taylor (1928-1997). Gene 223, 393-394.

Szybalski, W., 1998.  Sifting and winnowing:  its meaning and significance to faculty and to freedom of research.  In:  Hansen, W. L. (Ed.).  Academic Freedom on Trial.  100 Years of Sifting and Winnowing at the University of Wisconsin-Madison.  Office of Univ. Publ., University of Wisconsin-Madison, pp. 235-237.

Lorkiewicz, Z., 1999-report. Waclaw Szybalski. Polska Akademia Nauk - Lublin. Bull. Inform. No. 3, 23-27.

Szybalski,  W., 1999.   Maintenance of human-fed live lice in the laboratory and production of Weigl's  exanthematic typhus vaccine.  In:  Maintenance of Human, Animal, and Plant Pathogen Vectors, K. Maramorosch F. Mahmood (Eds.)   Science Publishers, Inc., Enfield, NH, USA. pp. 161-180.

Szybalski, W., 2000-review. Genetic revolution at the turn of  the XX  and  XXI centuries. (Rewolucja genetyczna na przelomie XX  i  XXI wieku. -- In Polish)  Kosmos 49, No. 3, 385-393.

Szybalski, W., 2000.  In memoriam: Alfred D. Hershey (1908-1997).  In:  F. W. Stahl (Ed) We Can Sleep Later. Alfred D. Hershey and the Origins of Molecular Biology.  Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. pp. 19-22.

Szybalski, W., 2001. My road to Øjvind Winge, the father of yeast genetics.  Genetics 158, 1-6.

Szybalski, W., 2003. Recollections of 1939-1949: From Politechnika Lwowska to Politechnika Gdanska. Acta Biochem. Polonica 50 (No.2), pp. XVII-XXI. http://www.lwow.home.pl/szybalski.htm

Dawson, M., 2003. Martha Chase dies. With Alfred D. Hershey, she established DNA as the genetic material.  The Scientist, August 20, 2003. http://www.biomedcentral.com/news/20030820/03/

Barankiewicz. J., 2003. Profesor Waclaw Szybalski laureat tegorocznej Nagrody im. Kazimierza Funka.   Przeglad Polski. Nowy  Dziennik,  New York, NY, (12 grudnia 2003)  Tygodniowy Dodatek Literacko Spoleczny. http://www.dziennik.com/www/dziennik/kult/archiwum/07-12-03/pp-12-12-04.html

Anonymous 2003:  Waclaw Szybalski - The Casimir Funk Natural Science Award 2003. http://www.lwow.home.pl/award.html
Annual Awards Ceremony http://www.piasa.org/awards.html

Szybalski, W., 2007. Celebration of life of Rudolf  S.  Weigl (1883-1957), A Leopolitan conqueror of typhus:  50th Aniversary of his passing. In:  Polish Academy of Sciences. Division II, Biological Sciences, The Committee on Microbiology, 2nd Polish-Ukrainian Weigl Conference. Microbiology in the XXI  Century.  Warsaw Agricultural University, SGGW, 24-26 Sept. 2007. pp. 11-33.

Szybalski, W., 2010. Goodbye Jagoda - A year after passing of Anna Jadwiga Podhajska. In: W. Makarewicz and E. Lojkowska (Eds.). Anna J. Podhajska (1938-2006)

Pierwsza Dama Polskiej Biotechnologii.  Published by Uniwersytet Gdanski,  Gdansk, Poland, 2010, pp. 306-310.

Szybalski, W. (2010):

In:  W.  Makarewicz  and  E.  Lojkowska, Eds. Anna  J. Podhajska   (1938-2006)
Pierwsza Dama Polskiej Biotechnologii
Published by Uniwersytet Gdanski,  Gdansk, Poland, 2010, pp. 126-132 and 135-152.

42.     HONORARY MEMBERSHIPS IN SCIENTIFIC SOCIETIES, HONORARY DEGREES,  ELECTIONS TO FOREIGN ACADEMIES OF SCIENCE,  AND  ADVISORY COUNCILS

(I)      Dr. Szybalski (born September 9, 1921, in Lwów. Poland) has been elected as an Honorary Member of:

     (1)     ITALIAN SOCIETY OF EXPERIMENTAL BIOLOGY, ROME – 1957

     (2)     POLISH MEDICAL ALLIANCE, CHICAGO, IL – 1964

     (3)     POLISH SOCIETY OF MICROBIOLOGISTS, WARSAW – 1975

     (4)     POLISH INSTITUTE OF ARTS & SCIENCES OF AMERICA elected PIASA Fellow, NEW YORK - 2004

     (5)     COMMITTEE ON MICROBIOLOGY, POLISH ACADEMY OF SCIENCES, 2005

(II)     Dr. Szybalski was awarded an Honorary Doctor Degree (Doctor Honoris Causa) by:

     (1)     the University of Marie Curie Sklodowska (U.M.C.S.), Lublin, Poland in 1980.

     (2)     the University of Gdansk, Gdansk, Poland in 1989.

     (3)     the  Medical University of Gdansk, Gdansk, Poland in 2000.

     (4)     Gdansk Institute of Technology (Politechnika Gdanska), Gdansk, Poland in 2001.

(III)   Dr. Szybalski was elected in 1995 as a Foreign Member of the Polish Academy of Sciences.

(IV)    Dr. Szybalski was appointed a member of the

     (1)     International Scientific Council of the Intercollegiate Faculty of Biotechnology, University of Gdansk & Medical University of Gdansk, Gdansk, Poland, in 1999.

     (2)     Member of the International Advisory Board of the BioMoBiL Center of Excellence, http://www.biotech.univ.gda.pl/biomobil/ Gdansk University, Gdansk, Poland, 2002-present.

43.     PRIZES, AWARDS AND SPECIAL VOLUMES

     Dr. Szybalski has received these (and other) prizes or awards:

(1) 1970 – Sixth Karl-August-Forster Lectureship Award, German Academy of Science and Literature, Mainz, Germany.

(2) 1975 – Wendel H. Griffith Memorial Lectureship Award, St. Louis University, St. Louis, MO.

(3) 1977 – Alfred Jurzykowski Foundation Award in Biology, New York, NY.

(4) 1981 - Award of the Norwegian Biochemical Society at the 1981 Winter Meeting in Beito, Norway, followed by the W. Szybalski Keynote Address.

(5) 1994 – Hilldale Award in Biological Sciences, the highest of honors bestowed by the University of Wisconsin-Madison.

(6) 1995 – Gregor J. Mendel Gold Medal for Merit in the Biological Sciences, Academy of Sciences of the Czech Republic.

(7) 1997 -  Raine Visiting Professorship, University of Western  Australia, Perth,  Australia (Feb.- April, 1997)

(8) 1997 - "A WISCONSIN GATHERING HONORING WACLAW SZYBALSKI" was held on 11 -12 August 1997 at the University of Wisconsin, Madison, WI, USA organized by by F. R. Blattner, R. R. Burgess, W. F. Dove, M. Filutowicz, R. L. Gourse, Z. Hradecná, B. A. Szybalski-Sandor, and J. Wild.

(9) 1998 - A Special Volume "Festschrift", edited by J. Wild, and containing papers in conjunction with "A WISCONSIN GATHERING HONORING WACLAW SZYBALSKI" organized by by F. R. Blattner, R. R. Burgess, W. F. Dove, M. Filutowicz, R. L. Gourse, Z. Hradecná, B. A. Szybalski-Sandor, and J. Wild, was published in GENE Vol. 223, (Nov. 26, 1998) Nos. 1-2, pp. 1-417.

(10) 2003 - "The 2003 Casimir Funk Natural Science Award", The Polish Institute of Arts & Sciences of America, New York, NY.

(11) 2004 - Elected Fellow of the POLISH INSTITUTE OF ARTS & SCIENCES OF AMERICA, New York - 2004.

(12) 2004 - Order of Merit, Commander Class, bestowed by the President of Poland.

(13) 2008 Elected Fellow of AAAS [Yoland.P.Cruz@oberlin.edu, March 25, 2008.


Short version of CV of WACLAW SZYBALSKI born 9–9–21, Lwów (Lemberg, Leopol, Lviv), Poland

Address:

McArdle Laboratory for Cancer Research
University of Wisconsin-Madison
1400 University Avenue
Madison, WI  53706-1526 USA
Tel.:  (608) 262-1259; FAX:  (608) 262-2824
e-mail:  szybalski@oncology.wisc.edu    or   wtszybal@wisc.edu

Present Positions Titles:

Professor Emeritus  of Oncology
Professor in the Department of Genetics

Education/Training:

Institute of Technology, Lwów, Poland, Ch.Eng., 1944
Institute of Technology, Gliwice, Poland, M.Ch.Eng., 1945
Institute of Technology, Gdansk, Poland, D.Sc., 1949

Positions held:

Assistant Professor, Institute of Technology, Gdansk, Poland, 1945-1949
Summer School Faculty Member (Deputy of  Professor W. Kemula), Guests of Chemistry Departments, Copenhagen, Denmark, May–August, 1946
Visiting Professor, Institute of Technology, Copenhagen, Denmark, 1947,1949-1950
(Chemistry Dept.:  Prof. J.A. Christiansen;  Laboratory of Biochemistry: Prof. H. Dam; Mech. Engineering Department: Prof. J. L. Mansa;  Carlsberg Laboratory:  Prof. O. Winge; Physica Dept,:  Prof. N. Bohr)
Head, Antibiotics Pilot Plant, Wyeth Inc., West Chester PA, 1950-1951
Staff Member, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1951-1955
Associate Member, Institute of Microbiology, Rutgers University, New Brunswick, NJ, 1955-1960
Associate Professor of Oncology, University of Wisconsin-Madison, Madison, WI, 1960-1963
Professor of Oncology, University of Wisconsin-Madison, Madison, WI, 1963-2003
Raine Visiting Professor, University of Western Australia, Perth, Australia, Spring 1997
Emeritus Professor of Oncology and of Genetics, University of Wisconsin-Madison,
      Madison, WI,  2003-present

Professional activities:

Editorial Board, MOLECULAR PHARMACOLOGY, 1963-1971
Editorial Board, JOURNAL OF VIROLOGY, 1969-1972
Editorial Board, CHEMICO-BIOLOGICAL INTERACTIONS, 1971-1975
Editorial Board, RECENT RESULTS IN CANCER RESEARCH, 1971-1985
Editorial Board, PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY, 1971-1986
Editorial Board, CANCER RESEARCH, 1972-1974
Editorial Board, ACTA BIOCHEMICA POLONICA, 1994-present
Editorial Board,  POLISH JOURNAL OF MICROBIOOGY (ACTA MICROBIOLIGICA
     POLONICA), 2004-present
Editor-in-Chief, GENE, 1976-1996
Chairman, Gordon Conference on Nucleic Acids, 1971
Chairman, Virology Division, Am. Society for Microbiology, 1972-1974
Chairman, Division IV, Am. Society for Microbiology, 1974-1975
Member, NIH Advisory Committee on the Recombinant DNA Molecule Program
     RAC), 1975-1977

Honors:

Elected Honorary Member, Italian Society of Experimental Biology, 1957
Elected Honorary Member, Polish Medical Alliance, Chicago, IL, 1964
Karl-August-Forster Lectureship Award, Academy of Science and Literature,
     Mainz, Germany, 1970
Elected Honorary Member, Polish Society of Microbiologists, 1975
EMBO Lecturer, Yugoslavia, 1971, Germany and Norway, 1976
COGENE (IUB) Lecturer, Kenya 1985; Egypt 1987; Zimbabwe 1988; Brazil 1992
Alfred Jurzykowski Foundation Award in Biology, New York, NY, 1977
Award of the  Norwegian Biochemical Society  at the 1981 Winter Meeting in Beito, Norway
Honorary Doctor Degree (Doctor Honoris Causa), Univ. of Marie Curie, Lublin, Poland, 1980
Honorary Doctor Degree (Doctor Honoris Causa), Univ. of Gdansk, Gdansk, Poland, 1989
Honorary Doctor Degree (Doctor Honoris Causa), Medical Univ. of Gdansk, (Akademia
     Medyczna) Gdansk, Poland, 2000
Honorary Doctor Degree (Doctor Honoris Causa), Gdansk Institute of Technology,
     (Politechnika Gdanska) Gdansk, Poland, 2001, PISMO PG 9 (No. 8) Nov. 2001
Hilldale Award, University of Wisconsin-Madison, 1994
Gregor J. Mendel Gold Medal for Merit in the Biological Sciences, Academy of Sciences
     of the Czech Republic, 1995
"2003 Casimir Funk Natural Science Award" The Polish Institute of Arts & Sciences of
     America, New York, NY, 2003
A Chemistry Building was dedicated to and named after Waclaw Szybalski at the Politechnika Gdanska (Institute
     of Technology) in Gdansk, Poland, following a Special Dedication Symposium in 2004.
Two Building at the, Medical Univ. of Gdansk, (Akademia Medyczna) Gdansk, Poland, were dedicated to
     and marked with special plaques in honor of Waclaw Szybalski in the years 2004 and 2006.
Elected Honorary Member, Committee on Microbiology, Polish Academy of Sciences, 2005.
Elected Fellow of AAAS [Yolanda.P.Cruz@oberlin.edu March 25, 2008]

New Institutions/Journals created by W.Sz.:

1945/46: W.Sz. created a  new Department of Industrial Fermentation  and Biotechnology at the Politechnika Gdanska (Institute of Technology) in Gdansk, Poland
       See: Szybalski, W., 2005 - Ernest Sym. Father of Biotechnology (Ernest Sym. Ojciec biotechnologii;  in Polish):   In:  Politechnika Gdanska: Pionierzy Politechniki Gdanskiej.  Gdansk  2005, str. 629 –  634.

1964: W.Sz  became a Founder  of a new  journal GENE,  An International Journal Focusing on Gene Cloning and Gene Structure and Function (Elsevier Sciece Publishers, Amstrdam).  He was the Editor-in-Chie for 20 years.  All issues of GENE carry forever a large inscription:
“FOUNDED IN 1976 BY WACLAW  SZYBALSKI”

1976: W.Sz  has established a new unit of the Molecular Genetics in The McArdle Laboratory for Cancer Research, University of Wisconsin, Madison WI,  USA.

1960: W.Sz has established a new unit of the Molecular Genetics in The McArdle laboratory for Cancer Research

2005-2009 W.Sz has founded The “Waclaw Szybalski Annex” to the Carnegie Library at Cold Spring Harbor Laboratories,  Cold Spring Harbor, LI, NY, USA.
    See:  Pollock, M., 2005 - Library Plans.  Reading, writing, & renovations. Lab plans Carnegie library rebirth. [funded by W. Szybalski].  In:  Harbor Transcript, Cold Spring Harbor Laboratory, Winter ’05, Vol. 25 [No. 1] pp. 10–11.